Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Neurosci ; 43(2): 240-260, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36400528

RESUMO

The preBötzinger Complex (preBötC) encodes inspiratory time as rhythmic bursts of activity underlying each breath. Spike synchronization throughout a sparsely connected preBötC microcircuit initiates bursts that ultimately drive the inspiratory motor patterns. Using minimal microcircuit models to explore burst initiation dynamics, we examined the variability in probability and latency to burst following exogenous stimulation of a small subset of neurons, mimicking experiments. Among various physiologically plausible graphs of 1000 excitatory neurons constructed using experimentally determined synaptic and connectivity parameters, directed Erdos-Rényi graphs with a broad (lognormal) distribution of synaptic weights best captured the experimentally observed dynamics. preBötC synchronization leading to bursts was regulated by the efferent connectivity of spiking neurons that are optimally tuned to amplify modest preinspiratory activity through input convergence. Using graph-theoretic and machine learning-based analyses, we found that input convergence of efferent connectivity at the next-nearest neighbor order was a strong predictor of incipient synchronization. Our analyses revealed a crucial role of synaptic heterogeneity in imparting exceptionally robust yet flexible preBötC attractor dynamics. Given the pervasiveness of lognormally distributed synaptic strengths throughout the nervous system, we postulate that these mechanisms represent a ubiquitous template for temporal processing and decision-making computational motifs.SIGNIFICANCE STATEMENT Mammalian breathing is robust, virtually continuous throughout life, yet is inherently labile: to adapt to rapid metabolic shifts (e.g., fleeing a predator or chasing prey); for airway reflexes; and to enable nonventilatory behaviors (e.g., vocalization, breathholding, laughing). Canonical theoretical frameworks-based on pacemakers and intrinsic bursting-cannot account for the observed robustness and flexibility of the preBötzinger Complex rhythm. Experiments reveal that network synchronization is the key to initiate inspiratory bursts in each breathing cycle. We investigated preBötC synchronization dynamics using network models constructed with experimentally determined neuronal and synaptic parameters. We discovered that a fat-tailed (non-Gaussian) synaptic weight distribution-a manifestation of synaptic heterogeneity-augments neuronal synchronization and attractor dynamics in this vital rhythmogenic network, contributing to its extraordinary reliability and responsiveness.


Assuntos
Neurônios , Centro Respiratório , Animais , Centro Respiratório/fisiologia , Reprodutibilidade dos Testes , Neurônios/fisiologia , Respiração , Mamíferos
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876768

RESUMO

Bundles of stiff filaments are ubiquitous in the living world, found both in the cytoskeleton and in the extracellular medium. These bundles are typically held together by smaller cross-linking molecules. We demonstrate, analytically, numerically, and experimentally, that such bundles can be kinked, that is, have localized regions of high curvature that are long-lived metastable states. We propose three possible mechanisms of kink stabilization: a difference in trapped length of the filament segments between two cross-links, a dislocation where the endpoint of a filament occurs within the bundle, and the braiding of the filaments in the bundle. At a high concentration of cross-links, the last two effects lead to the topologically protected kinked states. Finally, we explore, numerically and analytically, the transition of the metastable kinked state to the stable straight bundle.


Assuntos
Citoesqueleto de Actina/química , Colágeno/química , Simulação de Dinâmica Molecular
3.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266950

RESUMO

Despite the ubiquitous importance of cell contact guidance, the signal-inducing contact guidance of mammalian cells in an aligned fibril network has defied elucidation. This is due to multiple interdependent signals that an aligned fibril network presents to cells, including, at least, anisotropy of adhesion, porosity, and mechanical resistance. By forming aligned fibrin gels with the same alignment strength, but cross-linked to different extents, the anisotropic mechanical resistance hypothesis of contact guidance was tested for human dermal fibroblasts. The cross-linking was shown to increase the mechanical resistance anisotropy, without detectable change in network microstructure and without change in cell adhesion to the cross-linked fibrin gel. This methodology thus isolated anisotropic mechanical resistance as a variable for fixed anisotropy of adhesion and porosity. The mechanical resistance anisotropy |Y*| -1 - |X*| -1 increased over fourfold in terms of the Fourier magnitudes of microbead displacement |X*| and |Y*| at the drive frequency with respect to alignment direction Y obtained by optical forces in active microrheology. Cells were found to exhibit stronger contact guidance in the cross-linked gels possessing greater mechanical resistance anisotropy: the cell anisotropy index based on the tensor of cell orientation, which has a range 0 to 1, increased by 18% with the fourfold increase in mechanical resistance anisotropy. We also show that modulation of adhesion via function-blocking antibodies can modulate the guidance response, suggesting a concomitant role of cell adhesion. These results indicate that fibroblasts can exhibit contact guidance in aligned fibril networks by sensing anisotropy of network mechanical resistance.


Assuntos
Adesão Celular , Fibroblastos/química , Anisotropia , Fenômenos Biomecânicos , Fibrina/química , Fibrina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Porosidade , Estresse Mecânico
4.
Phys Rev Lett ; 127(15): 157801, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34677990

RESUMO

We discuss the response of biopolymer filament bundles bound by transient cross-linkers to compressive loading. These systems admit a mechanical instability at stresses typically below that of traditional Euler buckling. In this instability, there is thermally activated pair production of topological defects that generate localized regions of bending-kinks. These kinks shorten the bundle's effective length, thereby reducing the elastic energy of the mechanically loaded structure. This effect is the thermal analog of the Schwinger effect, in which a sufficiently large electric field causes electron-positron pair production. We discuss this analogy and describe the implications of this analysis for the mechanics of biopolymer filament bundles of various types under compression.

5.
Soft Matter ; 17(45): 10223-10241, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33367438

RESUMO

We consider the propagation of tension along specific filaments of a semiflexible filament network in response to the application of a point force using a combination of numerical simulations and analytic theory. We find the distribution of force within the network is highly heterogeneous, with a small number of fibers supporting a significant fraction of the applied load over distances of multiple mesh sizes surrounding the point of force application. We suggest that these structures may be thought of as tensile force chains, whose structure we explore via simulation. We develop self-consistent calculations of the point-force response function and introduce a transfer matrix approach to explore the decay of tension (into bending) energy and the branching of tensile force chains in the network.

6.
Proc Natl Acad Sci U S A ; 114(11): 2865-2870, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242681

RESUMO

The thermal fluctuations of membranes and nanoscale shells affect their mechanical characteristics. Whereas these fluctuations are well understood for flat membranes, curved shells show anomalous behavior due to the geometric coupling between in-plane elasticity and out-of-plane bending. Using conventional shallow shell theory in combination with equilibrium statistical physics we theoretically demonstrate that thermalized shells containing regions of negative Gaussian curvature naturally develop anomalously large fluctuations. Moreover, the existence of special curves, "singular lines," leads to a breakdown of linear membrane theory. As a result, these geometric curves effectively partition the cell into regions whose fluctuations are only weakly coupled. We validate these predictions using high-resolution microscopy of human red blood cells (RBCs) as a case study. Our observations show geometry-dependent localization of thermal fluctuations consistent with our theoretical modeling, demonstrating the efficacy in combining shell theory with equilibrium statistical physics for describing the thermalized morphology of cellular membranes.


Assuntos
Eritrócitos , Bicamadas Lipídicas , Modelos Teóricos , Simulação por Computador , Elasticidade , Humanos , Matemática , Estresse Mecânico
7.
Soft Matter ; 14(11): 2052-2058, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29479596

RESUMO

Understanding the response of complex materials to external force is central to fields ranging from materials science to biology. Here, we describe a novel type of mechanical adaptation in cross-linked networks of F-actin, a ubiquitous protein found in eukaryotic cells. We show that shear stress changes the network's nonlinear mechanical response even long after that stress is removed. The duration, magnitude and direction of forcing history all change this mechanical response. While the mechanical hysteresis is long-lived, it can be simply erased by force application in the opposite direction. We further show that the observed mechanical adaptation is consistent with stress-dependent changes in the nematic order of the constituent filaments. Thus, this mechanical hysteresis arises from the changes in non-linear response that originates from stress-induced changes to filament orientation. This demonstrates that F-actin networks can exhibit analog read-write mechanical hysteretic properties, which can be used for adaptation to mechanical stimuli.

8.
Soft Matter ; 13(38): 6730-6742, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28819672

RESUMO

Lipid monolayers at the air/water interface are often subject to large mechanical stresses when compressed laterally. For large enough compression they fold in the out-of-plane direction to relax stress. The repetitive folding and unfolding of lung surfactant monolayers during breathing plays a critical role in conserving monolayer material at the air/water interface lining the lung. Although the mechanisms behind the folding have been explored recently, relatively little information exists regarding the implications of folding dynamics on the long-term stability of the monolayer. We address this question by investigating the dynamical effect of folding rate in a lipid monolayer containing nano-particles, using a combination of analytic theory, simulation and experiment. We find that the presence of adsorbed particles are essential for monolayer rupture during unfolding. These particles act as linkers pinning the folds shut. The rate of folding affects reversibility as well. We construct a reversibility phase diagram spanned by the compression period and the size of the adsorbed particles showing the complex interaction of fold morphology, particle diffusion, and linker unbinding that results in reversible or irreversible folding.

9.
Soft Matter ; 11(24): 4899-911, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26012737

RESUMO

We examine the bond-breaking dynamics of transiently cross-linked semiflexible networks using a single filament model in which that filament is peeled from an array of cross-linkers. We examine the effect of quenched disorder in the placement of the linkers along the filament and the effect of stochastic bond-breaking (assuming Bell model unbinding kinetics) on the dynamics of filament cross-linker dissociation and the statistics of ripping events. We find that bond forces decay exponentially away from the point of loading and that bond breaking proceeds sequentially down the linker array from the point of loading in a series of stochastic ripping events. We compare these theoretical predictions to the observed trajectories of large beads in a cross-linked microtubule network and identify the observed jumps of the bead with the linker rupture events predicted by the single filament model.


Assuntos
Microtúbulos/química , Modelos Teóricos , Elasticidade , Estresse Mecânico
10.
Phys Rev Lett ; 112(23): 238102, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24972229

RESUMO

We present a theoretical and computational analysis of the rheology of networks made up of bundles of semiflexible filaments bound by transient cross-linkers. Such systems are ubiquitous in the cytoskeleton and can be formed in vitro using filamentous actin and various cross-linkers. We find that their high-frequency rheology is characterized by a scaling behavior that is quite distinct from that of networks of the well-studied single semiflexible filaments. This regime can be understood theoretically in terms of a length-scale-dependent bending modulus for bundles. Next, we observe new dissipative dynamics associated with the shear-induced disruption of the network at intermediate frequencies. Finally, at low frequencies, we encounter a region of non-Newtonian rheology characterized by power-law scaling. This regime is dominated by bundle dissolution and large-scale rearrangements of the network driven by equilibrium thermal fluctuations.


Assuntos
Actinas/química , Citoesqueleto/química , Modelos Químicos , Reologia/métodos , Proteínas de Transporte/química , Proteínas dos Microfilamentos/química , Viscosidade
11.
Phys Rev Lett ; 111(3): 038101, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23909363

RESUMO

We present a theory of flexural wave propagation on elastic shells having nontrivial geometry and develop an analogy to geometric optics. The transport of momentum within the shell itself is anisotropic due to the curvature, and as such complex classical effects such as birefringence are generically found. We determine the equations of reflection and refraction of such waves at boundaries between different local geometries, showing that waves are totally internally reflected, especially at boundaries between regions of positive and negative Gaussian curvature. We verify these effects by using finite element simulations and discuss the ramifications of these effects for the statistical mechanics of thin curved materials.


Assuntos
Modelos Teóricos , Refratometria/métodos , Som , Elasticidade
12.
Phys Rev Lett ; 110(13): 137802, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581375

RESUMO

Microrheological studies of phospholipid monolayers, bilayers, and other Langmuir monolayer systems are traditionally performed by observing the thermal fluctuations of tracers attached to the membrane or interface. Measurements of this type obtain surface moduli that are orders of magnitude different from those obtained using macroscopic or active techniques. These large discrepancies can result from uncertainties in the tracer's coupling to the monolayer or the local disruption of the monolayer by the tracer. To avoid such problems, we perform a microrheological experiment with the tracer particle placed at a known depth beneath the monolayer; this avoids the issues mentioned at the cost of generating a weaker, purely hydrodynamic coupling between the tracer and the monolayer. We calculate the appropriate response functions for this submerged particle microrheology and demonstrate the technique on three model monolayer systems.

13.
Soft Matter ; 9(2): 383-393, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23577042

RESUMO

We determine the time- and force-dependent viscoelastic responses of reconstituted networks of microtubules that have been strongly crosslinked by biotin-streptavidin bonds. To measure the microscale viscoelasticity of such networks, we use a magnetic tweezers device to apply localized forces. At short time scales, the networks respond nonlinearly to applied force, with stiffening at small forces, followed by a reduction in the stiffening response at high forces, which we attribute to the force-induced unbinding of crosslinks. At long time scales, force-induced bond unbinding leads to local network rearrangement and significant bead creep. Interestingly, the network retains its elastic modulus even under conditions of significant plastic flow, suggesting that crosslinker breakage is balanced by the formation of new bonds. To better understand this effect, we developed a finite element model of such a stiff filament network with labile crosslinkers obeying force-dependent Bell model unbinding dynamics. The coexistence of dissipation, due to bond breakage, and the elastic recovery of the network is possible because each filament has many crosslinkers. Recovery can occur as long as a sufficient number of the original crosslinkers are preserved under the loading period. When these remaining original crosslinkers are broken, plastic flow results.

14.
Proc Natl Acad Sci U S A ; 107(15): 6731-6, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20351261

RESUMO

The human red blood cell (RBC) membrane, a fluid lipid bilayer tethered to an elastic 2D spectrin network, provides the principal control of the cell's morphology and mechanics. These properties, in turn, influence the ability of RBCs to transport oxygen in circulation. Current mechanical measurements of RBCs rely on external loads. Here we apply a noncontact optical interferometric technique to quantify the thermal fluctuations of RBC membranes with 3 nm accuracy over a broad range of spatial and temporal frequencies. Combining this technique with a new mathematical model describing RBC membrane undulations, we measure the mechanical changes of RBCs as they undergo a transition from the normal discoid shape to the abnormal echinocyte and spherical shapes. These measurements indicate that, coincident with this morphological transition, there is a significant increase in the membrane's shear, area, and bending moduli. This mechanical transition can alter cell circulation and impede oxygen delivery.


Assuntos
Eritrócitos/citologia , Transporte Biológico , Citoesqueleto/metabolismo , Elasticidade , Deformação Eritrocítica , Membrana Eritrocítica/metabolismo , Humanos , Interferometria/métodos , Bicamadas Lipídicas/química , Modelos Biológicos , Modelos Teóricos , Óptica e Fotônica , Oxigênio/metabolismo , Estresse Mecânico , Viscosidade
15.
Phys Rev E ; 107(2-1): 024418, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932516

RESUMO

The theory of finite-strain elasticity is applied to the phenomenon of cavitation observed in polymer gels following liquid-liquid phase separation of the solvent, which opens a fascinating window on the role of finite-strain elasticity theory in soft materials in general. We show that compressibility effects strongly enhance cavitation in simple materials that obey neo-Hookean elasticity. On the other hand, cavitation phenomena in gels of flexible polymers in a binary solvent that phase separates are surprisingly similar to those of incompressible materials. We find that, as a function of the interfacial energy between the two solvent components, there is a sharp transition between cavitation and classical nucleation and growth. Next, biopolymer gels are characterized by strain hardening and even very low levels of strain hardening turn out to suppress cavitation in polymer gels that obey Flory-Huggins theory in the absence of strain hardening. Our results indicate that cavitation is, in essence, not possible for polymer networks that show strain hardening.

16.
Phys Rev Lett ; 109(18): 188104, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215337

RESUMO

Because of its ability to study specifically labeled structures, fluorescence microscopy is the most widely used technique for investigating live cell dynamics and function. Fluorescence correlation spectroscopy is an established method for studying molecular transport and diffusion coefficients at a fixed spatial scale. We propose a new approach, dispersion-relation fluorescence spectroscopy (DFS), to study the transport dynamics over a broad range of spatial and temporal scales. The molecules of interest are labeled with a fluorophore whose motion gives rise to spontaneous fluorescence intensity fluctuations that are analyzed to quantify the governing mass transport dynamics. These data are characterized by the effective dispersion relation. We report on experiments demonstrating that DFS can distinguish diffusive from advection motion in a model system, where we obtain quantitatively accurate values of both diffusivities and advection velocities. Because of its spatially resolved information, DFS can distinguish between directed and diffusive transport in living cells. Our data indicate that the fluorescently labeled actin cytoskeleton exhibits active transport motion along a direction parallel to the fibers and diffusive in the perpendicular direction.


Assuntos
Espectrometria de Fluorescência/métodos , Actinas/química , Actinas/metabolismo , Animais , Transporte Biológico , Difusão , Drosophila , Fibroblastos/química , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Peroxissomos/química , Peroxissomos/metabolismo
17.
Phys Rev E ; 103(1-1): 013002, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33601515

RESUMO

The mechanics of lower dimensional elastic structures depends strongly on the geometry of their stress-free state. Elastic deformations separate into in-plane stretching and lower energy out-of-plane bending deformations. For elastic structures with a curved stress-free state, these two elastic modes are coupled within linear elasticity. We investigate the effect of that curvature-induced coupling on wave propagation in lower dimensional elastic structures, focusing on the simplest example-a curved elastic rod in two dimensions. We focus only on the geometry-induced coupling between bending and longitudinal (in-plane) strain that is common to both rods in two dimensions and to elastic shells. We find that the dispersion relation of the waves becomes gapped in the presence of finite curvature; bending modes are absent below a frequency proportional to the curvature of the rod. By studying the scattering of undulatory waves off regions of uniform curvature, we find that undulatory waves with frequencies in the gap associated with the curved region tunnel through that curved region via conversion into compression waves. These results should be directly applicable to the spectrum and spatial distribution of phonon modes in a number of curved rod-like elastic solids, including carbon nanotubes and biopolymer filaments.

18.
Phys Rev E ; 103(5-1): 053002, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134269

RESUMO

We consider the propagation of flexural waves across a nearly flat, thin membrane, whose stress-free state is curved. The stress-free configuration is specified by a quenched height field, whose Fourier components are drawn from a Gaussian distribution with power-law variance. Gaussian curvature couples the in-plane stretching to out-of-plane bending. Integrating out the faster stretching modes yields a wave equation for undulations in the presence of an effective random potential, determined purely by geometry. We show that at long times and lengths, the undulation intensity obeys a diffusion equation. The diffusion coefficient is found to be frequency dependent and sensitive to the quenched height field distribution. Finally, we consider the effect of coherent backscattering corrections, yielding a weak localization correction that decreases the diffusion coefficient proportional to the logarithm of the system size, and induces a localization transition at large amplitude of the quenched height field. The localization transition is confirmed via a self-consistent extension to the strong disorder regime.

19.
Polymers (Basel) ; 13(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279339

RESUMO

We examine the nonequilibrium production of topological defects-braids-in semiflexible filament bundles under cycles of compression and tension. During these cycles, the period of compression facilitates the thermally activated pair production of braid/anti-braid pairs, which then may separate when the bundle is under tension. As a result, appropriately tuned alternating periods of compression and extension should lead to the proliferation of braid defects in a bundle so that the linear density of these pairs far exceeds that expected in the thermal equilibrium. Secondly, we examine the slow extension of braided bundles under tension, showing that their end-to-end length creeps nonmonotonically under a fixed force due to braid deformation and the motion of the braid pair along the bundle. We conclude with a few speculations regarding experiments on semiflexible filament bundles and their networks.

20.
Langmuir ; 26(15): 12755-60, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20590121

RESUMO

The collapse dynamics of giant folds in a catanionic monolayer at the air-water interface are examined. A monolayer of dioctadecyldimethylammonium bromide (DODAB) and sodium dodecyl sulfate (SDS) in a 1:1 ratio is the system of study that previously was found to fold upon compression in a Langmuir trough. Carboxylate-coated polystyrene beads (1 microm diameter) are deposited and bound to the monolayer. Displacement of the beads is measured with epifluorescence microscopy and particle image velocimetry, yielding a measurement of the velocity of the monolayer around the fold. Reversibility is confirmed by measuring the amount of monolayer material entering and leaving the fold. Material near folds are found to have a maximum relative velocity on the order of 0.1 mm/s, and fold depths are found to be on the order of 1 mm. The folds exhibit regular unfolding behavior, which can be explained qualitatively by a simple mechanical model.


Assuntos
Compostos de Amônio Quaternário/química , Cátions/química , Microscopia de Fluorescência , Microesferas , Poliestirenos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA