Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 243(2): 537-542, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38803104

RESUMO

Ten years ago, (black) stem rust - the most damaging of wheat (Triticum aestivum) rusts - re-emerged in western Europe. Disease incidences have since increased in scale and frequency. Here, we investigated the likely underlying causes and used those to propose urgently needed mitigating actions. We report that the first large-scale UK outbreak of the wheat stem rust fungus, Puccinia graminis f. sp. tritici (Pgt), in 2022 may have been caused by timely arrival of airborne urediniospores from southwest Europe. The drive towards later-maturing wheat varieties in the UK may be exacerbating Pgt incidences, which could have disastrous consequences. Indeed, infection assays showed that two UK Pgt isolates from 2022 could infect over 96% of current UK wheat varieties. We determined that the temperature response data in current disease risk simulation models are outdated. Analysis of germination rates for three current UK Pgt isolates showed substantial variation in temperature response functions, suggesting that the accuracy of disease risk simulations would be substantially enhanced by incorporating data from prevailing Pgt isolates. As Pgt incidences continue to accelerate in western Europe, we advocate for urgent action to curtail Pgt losses and help safeguard future wheat production across the region.


Assuntos
Doenças das Plantas , Caules de Planta , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia , Europa (Continente) , Caules de Planta/microbiologia , Puccinia/patogenicidade , Puccinia/fisiologia , Temperatura , Basidiomycota/fisiologia , Basidiomycota/patogenicidade , Reino Unido/epidemiologia
2.
Plant Cell ; 33(5): 1728-1747, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33565586

RESUMO

Plant pathogens suppress defense responses to evade recognition and promote successful colonization. Although identifying the genes essential for pathogen ingress has traditionally relied on screening mutant populations, the post-genomic era provides an opportunity to develop novel approaches that accelerate identification. Here, RNA-seq analysis of 68 pathogen-infected bread wheat (Triticum aestivum) varieties, including three (Oakley, Solstice and Santiago) with variable levels of susceptibility, uncovered a branched-chain amino acid aminotransferase (termed TaBCAT1) as a positive regulator of wheat rust susceptibility. We show that TaBCAT1 is required for yellow and stem rust infection and likely functions in branched-chain amino acid (BCAA) metabolism, as TaBCAT1 disruption mutants had elevated BCAA levels. TaBCAT1 mutants also exhibited increased levels of salicylic acid (SA) and enhanced expression of associated defense genes, indicating that BCAA regulation, via TaBCAT1, has a key role in SA-dependent defense activation. We also identified an association between the levels of BCAAs and resistance to yellow rust infection in wheat. These findings provide insight into SA-mediated defense responses in wheat and highlight the role of BCAA metabolism in the defense response. Furthermore, TaBCAT1 could be manipulated to potentially provide resistance to two of the most economically damaging diseases of wheat worldwide.


Assuntos
Aminoácidos/metabolismo , Basidiomycota/fisiologia , Resistência à Doença , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Transaminases/metabolismo , Triticum/enzimologia , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo
3.
BMC Genomics ; 22(1): 166, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750297

RESUMO

BACKGROUND: Transcriptomics is being increasingly applied to generate new insight into the interactions between plants and their pathogens. For the wheat yellow (stripe) rust pathogen (Puccinia striiformis f. sp. tritici, Pst) RNA-based sequencing (RNA-Seq) has proved particularly valuable, overcoming the barriers associated with its obligate biotrophic nature. This includes the application of RNA-Seq approaches to study Pst and wheat gene expression dynamics over time and the Pst population composition through the use of a novel RNA-Seq based surveillance approach called "field pathogenomics". As a dual RNA-Seq approach, the field pathogenomics technique also provides gene expression data from the host, giving new insight into host responses. However, this has created a wealth of data for interrogation. RESULTS: Here, we used the field pathogenomics approach to generate 538 new RNA-Seq datasets from Pst-infected field wheat samples, doubling the amount of transcriptomics data available for this important pathosystem. We then analysed these datasets alongside 66 RNA-Seq datasets from four Pst infection time-courses and 420 Pst-infected plant field and laboratory samples that were publicly available. A database of gene expression values for Pst and wheat was generated for each of these 1024 RNA-Seq datasets and incorporated into the development of the rust expression browser ( http://www.rust-expression.com ). This enables for the first time simultaneous 'point-and-click' access to gene expression profiles for Pst and its wheat host and represents the largest database of processed RNA-Seq datasets available for any of the three Puccinia wheat rust pathogens. We also demonstrated the utility of the browser through investigation of expression of putative Pst virulence genes over time and examined the host plants response to Pst infection. CONCLUSIONS: The rust expression browser offers immense value to the wider community, facilitating data sharing and transparency and the underlying database can be continually expanded as more datasets become publicly available.


Assuntos
Basidiomycota , Transcriptoma , Basidiomycota/genética , Doenças das Plantas/genética , Triticum/genética , Virulência
4.
BMC Biol ; 17(1): 65, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31405370

RESUMO

BACKGROUND: Effective disease management depends on timely and accurate diagnosis to guide control measures. The capacity to distinguish between individuals in a pathogen population with specific properties such as fungicide resistance, toxin production and virulence profiles is often essential to inform disease management approaches. The genomics revolution has led to technologies that can rapidly produce high-resolution genotypic information to define individual variants of a pathogen species. However, their application to complex fungal pathogens has remained limited due to the frequent inability to culture these pathogens in the absence of their host and their large genome sizes. RESULTS: Here, we describe the development of Mobile And Real-time PLant disEase (MARPLE) diagnostics, a portable, genomics-based, point-of-care approach specifically tailored to identify individual strains of complex fungal plant pathogens. We used targeted sequencing to overcome limitations associated with the size of fungal genomes and their often obligately biotrophic nature. Focusing on the wheat yellow rust pathogen, Puccinia striiformis f.sp. tritici (Pst), we demonstrate that our approach can be used to rapidly define individual strains, assign strains to distinct genetic lineages that have been shown to correlate tightly with their virulence profiles and monitor genes of importance. CONCLUSIONS: MARPLE diagnostics enables rapid identification of individual pathogen strains and has the potential to monitor those with specific properties such as fungicide resistance directly from field-collected infected plant tissue in situ. Generating results within 48 h of field sampling, this new strategy has far-reaching implications for tracking plant health threats.


Assuntos
Basidiomycota/isolamento & purificação , Testes Diagnósticos de Rotina/métodos , Doenças das Plantas/microbiologia , Sistemas Automatizados de Assistência Junto ao Leito , Basidiomycota/classificação , Doenças das Plantas/classificação
5.
J Nutr ; 144(7): 1128S-36S, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24812070

RESUMO

The Mushroom Council convened the Mushrooms and Health Summit in Washington, DC, on 9-10 September 2013. The proceedings are synthesized in this article. Although mushrooms have long been regarded as health-promoting foods, research specific to their role in a healthful diet and in health promotion has advanced in the past decade. The earliest mushroom cultivation was documented in China, which remains among the top global mushroom producers, along with the United States, Italy, The Netherlands, and Poland. Although considered a vegetable in dietary advice, mushrooms are fungi, set apart by vitamin B-12 in very low quantity but in the same form found in meat, ergosterol converted with UV light to vitamin D2, and conjugated linoleic acid. Mushrooms are a rare source of ergothioneine as well as selenium, fiber, and several other vitamins and minerals. Some preclinical and clinical studies suggest impacts of mushrooms on cognition, weight management, oral health, and cancer risk. Preliminary evidence suggests that mushrooms may support healthy immune and inflammatory responses through interaction with the gut microbiota, enhancing development of adaptive immunity, and improved immune cell functionality. In addition to imparting direct nutritional and health benefits, analysis of U.S. food intake survey data reveals that mushrooms are associated with higher dietary quality. Also, early sensory research suggests that mushrooms blended with meats and lower sodium dishes are well liked and may help to reduce intakes of red meat and salt without compromising taste. As research progresses on the specific health effects of mushrooms, there is a need for effective communication efforts to leverage mushrooms to improve overall dietary quality.


Assuntos
Agaricales/química , Alimento Funcional/análise , Promoção da Saúde , Agaricales/crescimento & desenvolvimento , Congressos como Assunto , Humanos
6.
Plant Pathol ; 71(4): 890-900, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35873178

RESUMO

Wheat stem rust, caused by the fungus Puccinia graminis f. sp. tritici (Pgt), occurs in most wheat-growing areas worldwide, and, in western Europe since 2013, has started to re-emerge after many decades of absence. Following this trend across western Europe, in 2020, we also detected and recorded wheat stem rust for the first time in five decades in experimental plots across five locations in Ireland. To examine the potential origin of the Irish Pgt infection in 2020, we carried out transcriptome sequencing on 12 Pgt-infected wheat samples collected across Ireland and compared these to 76 global P. graminis isolates. This analysis identified a close genetic relationship between the Irish Pgt isolates and those from Ethiopia collected in 2015 after a severe stem rust epidemic caused by the TKTTF Pgt race, and with the UK-01 Pgt isolate that was previously assigned to the TKTTF race. Subsequent pathology-based race profiling designated two Irish isolates and recent UK and French Pgt isolates to the TKTTF Pgt race group. This suggests that the Irish Pgt occurrence most probably originated from recent long-distance windborne dispersal of Pgt urediniospores from neighbouring countries in Europe where we confirmed the Pgt TKTTF race continues to be prevalent. The identification of wheat stem rust in Ireland at multiple locations in 2020 illustrates that the disease can occur in Ireland and emphasizes the need to re-initiate local monitoring for this re-emergent threat to wheat production across western Europe.

7.
Commun Biol ; 4(1): 1216, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686772

RESUMO

Fungi have evolved an array of spore discharge and dispersal processes. Here, we developed a theoretical model that explains the ejection mechanics of aeciospore liberation in the stem rust pathogen Puccinia graminis. Aeciospores are released from cluster cups formed on its Berberis host, spreading early-season inoculum into neighboring small-grain crops. Our model illustrates that during dew or rainfall, changes in aeciospore turgidity exerts substantial force on neighboring aeciospores in cluster cups whilst gaps between spores become perfused with water. This perfusion coats aeciospores with a lubrication film that facilitates expulsion, with single aeciospores reaching speeds of 0.053 to 0.754 m·s-1. We also used aeciospore source strength estimates to simulate the aeciospore dispersal gradient and incorporated this into a publicly available web interface. This aids farmers and legislators to assess current local risk of dispersal and facilitates development of sophisticated epidemiological models to potentially curtail stem rust epidemics originating on Berberis.


Assuntos
Umidade , Puccinia/fisiologia , Esporos Fúngicos/fisiologia
8.
Commun Biol ; 1: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271900

RESUMO

Wheat stem rust, a devastating disease of wheat and barley caused by the fungal pathogen Puccinia graminis f. sp. tritici, was largely eradicated in Western Europe during the mid-to-late twentieth century. However, isolated outbreaks have occurred in recent years. Here we investigate whether a lack of resistance in modern European varieties, increased presence of its alternate host barberry and changes in climatic conditions could be facilitating its resurgence. We report the first wheat stem rust occurrence in the United Kingdom in nearly 60 years, with only 20% of UK wheat varieties resistant to this strain. Climate changes over the past 25 years also suggest increasingly conducive conditions for infection. Furthermore, we document the first occurrence in decades of P. graminis on barberry in the UK . Our data illustrate that wheat stem rust does occur in the UK and, when climatic conditions are conducive, could severely harm wheat and barley production.

9.
Genome Biol Evol ; 9(12): 3282-3296, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29177504

RESUMO

Recent disease outbreaks caused by (re-)emerging plant pathogens have been associated with expansions in pathogen geographic distribution and increased virulence. For example, in the past two decades' wheat yellow (stripe) rust, Puccinia striiformis f. sp. tritici, has seen the emergence of new races that are adapted to warmer temperatures, have expanded virulence profiles, and are more aggressive than previous races, leading to wide-scale epidemics. Here, we used field-based genotyping to generate high-resolution data on P. striiformis genetics and carried out global population analysis. We also undertook comparative analysis of the 2014 and 2013 UK populations and assessed the temporal dynamics and host specificity of distinct pathogen genotypes. Our analysis revealed that P. striiformis lineages recently detected in Europe are extremely diverse and in fact similar to globally dispersed populations. In addition, we identified a considerable shift in the UK P. striiformis population structure including the first identification of one infamous race known as Kranich. Next, by establishing the genotype of both the pathogen and host within a single infected field sample, we uncovered evidence for varietal specificity for genetic groups of P. striiformis. Finally, we found potential seasonal specificity for certain genotypes of the pathogen with several lineages identified only in samples collected in late spring and into the summer, whereas one lineage was identified throughout the wheat growing season. Our discovery of which wheat varieties are susceptible to which specific P. striiformis isolates, and when those isolates are prevalent throughout the year, represents a powerful tool for disease management.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Genômica/métodos , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Triticum/microbiologia , Surtos de Doenças , Genoma Fúngico , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Estações do Ano , Virulência
10.
Genome Biol ; 16: 23, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25723868

RESUMO

BACKGROUND: Emerging and re-emerging pathogens imperil public health and global food security. Responding to these threats requires improved surveillance and diagnostic systems. Despite their potential, genomic tools have not been readily applied to emerging or re-emerging plant pathogens such as the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici (PST). This is due largely to the obligate parasitic nature of PST, as culturing PST isolates for DNA extraction remains slow and tedious. RESULTS: To counteract the limitations associated with culturing PST, we developed and applied a field pathogenomics approach by transcriptome sequencing infected wheat leaves collected from the field in 2013. This enabled us to rapidly gain insights into this emerging pathogen population. We found that the PST population across the United Kingdom (UK) underwent a major shift in recent years. Population genetic structure analyses revealed four distinct lineages that correlated to the phenotypic groups determined through traditional pathology-based virulence assays. Furthermore, the genetic diversity between members of a single population cluster for all 2013 PST field samples was much higher than that displayed by historical UK isolates, revealing a more diverse population of PST. CONCLUSIONS: Our field pathogenomics approach uncovered a dramatic shift in the PST population in the UK, likely due to a recent introduction of a diverse set of exotic PST lineages. The methodology described herein accelerates genetic analysis of pathogen populations and circumvents the difficulties associated with obligate plant pathogens. In principle, this strategy can be widely applied to a variety of plant pathogens.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Triticum/microbiologia , Sequência de Aminoácidos , Genoma Fúngico , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Tipagem Molecular , Fenótipo , Filogenia , Filogeografia , Folhas de Planta , RNA Fúngico , Alinhamento de Sequência , Reino Unido , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA