Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569410

RESUMO

Breast cancer (BC) is the most common cancer in women, with metastatic BC being responsible for the highest number of deaths. A frequent site for BC metastasis is the brain. Brain metastasis derived from BC involves the cooperation of multiple genetic, epigenetic, angiogenic, and tumor-stroma interactions. Most of these interactions provide a unique opportunity for development of new therapeutic targets. Potentially targetable signaling pathways are Notch, Wnt, and the epidermal growth factor receptors signaling pathways, all of which are linked to driving BC brain metastasis (BCBM). However, a major challenge in treating brain metastasis remains the blood-brain barrier (BBB). This barrier restricts the access of unwanted molecules, cells, and targeted therapies to the brain parenchyma. Moreover, current therapies to treat brain metastases, such as stereotactic radiosurgery and whole-brain radiotherapy, have limited efficacy. Promising new drugs like phosphatase and kinase modulators, as well as BBB disruptors and immunotherapeutic strategies, have shown the potential to ease the disease in preclinical studies, but remain limited by multiple resistance mechanisms. This review summarizes some of the current understanding of the mechanisms involved in BC brain metastasis and highlights current challenges as well as opportunities in strategic designs of potentially successful future therapies.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Radiocirurgia , Feminino , Humanos , Neoplasias da Mama/genética , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/genética
2.
Can J Physiol Pharmacol ; 100(1): 86-91, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34379992

RESUMO

Prolactin-inducible protein (PIP) is a multifunctional glycoprotein that is highly expressed and found in the secretions of apocrine glands such as salivary, lacrimal, and sweat glands including the mammary glands. PIP has been implicated in various diseases, including breast cancer, gross cystic disease of the breast, keratoconus of the eye, and the autoimmune Sjögren's syndrome. Here we have generated a Pip knockout (KO) mouse using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRSPR-associated (Cas)9 system. The Cas9 protein and two single guide RNAs targeting specific regions for both exons 1 and 2 of the Pip gene were microinjected into mouse embryos. The deletions and insertions promoted by CRISPR/Cas9 system on the Pip gene successfully disrupted Pip protein coding, as confirmed by PCR genotyping, sequencing, and ultimately Western blot analysis. This mouse model was generated in the inbred C57Bl/6J mouse, which exhibits lower genetic variation. This novel CRISPR Pip KO mouse model will not only be useful for future studies to interrogate the multifunctional role of PIP in physiological processes but will facilitate a broader understanding of the function of PIP in vivo while providing unprecedented insight into its role in a spectrum of diseases attributed to the deregulation of the PIP gene.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes/métodos , Engenharia Genética/métodos , Camundongos Knockout , Proteínas/genética , Animais , Camundongos Endogâmicos C57BL , Modelos Animais
3.
J Cell Physiol ; 231(10): 2196-204, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26864447

RESUMO

Pre-mRNA splicing is a cotranscriptional process affected by the chromatin architecture along the body of coding genes. Recruited to the pre-mRNA by splicing factors, histone deacetylases (HDACs) and K-acetyltransferases (KATs) catalyze dynamic histone acetylation along the gene. In colon carcinoma HCT 116 cells, HDAC inhibition specifically increased KAT2B occupancy as well as H3 and H4 acetylation of the H3K4 trimethylated (H3K4me3) nucleosome positioned over alternative exon 2 of the MCL1 gene, an event paralleled with the exclusion of exon 2. These results were reproduced in MDA-MB-231, but not in MCF7 breast adenocarcinoma cells. These later cells have much higher levels of demethylase KDM5B than either HCT 116 or MDA-MB-231 cells. We show that H3K4me3 steady-state levels and H3K4me3 occupancy at the end of exon 1 and over exon 2 of the MCL1 gene were lower in MCF7 than in MDA-MB-231 cells. Furthermore, in MCF7 cells, there was minimal effect of HDAC inhibition on H3/H4 acetylation and H3K4me3 levels along the MCL1 gene and no change in pre-mRNA splicing choice. These results show that, upon HDAC inhibition, the H3K4me3 mark plays a critical role in the exclusion of exon 2 from the MCL1 pre-mRNA. J. Cell. Physiol. 231: 2196-2204, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Histonas/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Acetilação , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Lisina/metabolismo , Metilação
4.
Nucleic Acids Res ; 42(3): 1656-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24234443

RESUMO

Histone deacetylases (HDACs) and lysine acetyltransferases (KATs) catalyze dynamic histone acetylation at regulatory and coding regions of transcribed genes. Highly phosphorylated HDAC2 is recruited within corepressor complexes to regulatory regions, while the nonphosphorylated form is associated with the gene body. In this study, we characterized the nonphosphorylated HDAC2 complexes recruited to the transcribed gene body and explored the function of HDAC-complex-mediated dynamic histone acetylation. HDAC1 and 2 were coimmunoprecipitated with several splicing factors, including serine/arginine-rich splicing factor 1 (SRSF1) which has roles in alternative splicing. The co-chromatin immunoprecipitation of HDAC1/2 and SRSF1 to the gene body was RNA-dependent. Inhibition of HDAC activity and knockdown of HDAC1, HDAC2 or SRSF1 showed that these proteins were involved in alternative splicing of MCL1. HDAC1/2 and KAT2B were associated with nascent pre-mRNA in general and with MCL1 pre-mRNA specifically. Inhibition of HDAC activity increased the occupancy of KAT2B and acetylation of H3 and H4 of the H3K4 methylated alternative MCL1 exon 2 nucleosome. Thus, nonphosphorylated HDAC1/2 is recruited to pre-mRNA by splicing factors to act at the RNA level with KAT2B and other KATs to catalyze dynamic histone acetylation of the MCL1 alternative exon and alter the splicing of MCL1 pre-mRNA.


Assuntos
Processamento Alternativo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Acetilação , Linhagem Celular , Cromatina/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina , Transcrição Gênica , Fatores de Transcrição de p300-CBP/metabolismo
5.
Cancer Invest ; 33(9): 429-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26288115

RESUMO

Downregulation of claudin 1, a critical tight junction protein, has been correlated with increased invasiveness in breast cancer. However, recent studies suggest that claudin 1 contributes to the progression of some molecular subtypes of breast cancer. In this study, claudin 1 promotes migration in luminal-like MCF7 human breast cancer cells and increases their sensitivity to tamoxifen, etoposide, and cisplatin. We also observed an inverse relationship between upregulation of claudin 1 and TGFß. Collectively, our results suggest that claudin 1 has the potential to be used as a predictive marker for treatment efficacy for specific breast cancer patient subgroups.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Claudina-1/genética , Tamoxifeno/farmacologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Etoposídeo/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Células MCF-7 , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/genética , Fator de Crescimento Transformador beta/genética
6.
Cancer Invest ; 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26279089

RESUMO

Downregulation of claudin 1, a critical tight junction protein, has been correlated with increased invasiveness in breast cancer. However, recent studies suggest that claudin 1 contributes to the progression of some molecular subtypes of breast cancer. In this study, claudin 1 promotes migration in luminal-like MCF7 human breast cancer cells and increases their sensitivity to tamoxifen, etoposide, and cisplatin. We also observed an inverse relationship between upregulation of claudin 1 and TGFß. Collectively, our results suggest that claudin 1 has the potential to be used as a predictive marker for treatment efficacy for specific breast cancer patient subgroups.

7.
Proteome Sci ; 13: 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25762866

RESUMO

BACKGROUND: Knowledge of the mouse salivary proteome is not well documented and as a result, very limited. Currently, several salivary proteins remain unidentified and for some others, their function yet to be determined. The goal of the present study is to utilize mass spectrometry analysis to widen our knowledge of mouse salivary proteins, and through extensive database searches, provide further insight into the array of proteins that can be found in saliva. A comprehensive mouse salivary proteome will also facilitate the development of mouse models to study specific biomarkers of many human diseases. RESULTS: Individual saliva samples were collected from male and female mice, and later pooled according to sex. Two pools of saliva from female mice (2 samples/pool) and 2 pools of saliva from male mice were used for analysis utilizing high performance liquid chromatograph mass spectrometry (nano-RPLC-MS/MS). The resulting datasets identified 345 proteins: 174 proteins were represented in saliva obtained from both sexes, as well as 82 others that were more female specific and 89 that were more male specific. Of these sex linked proteins, twelve were identified as exclusively sex-limited; 10 unique to males and 2 unique to females. Functional analysis of the 345 proteins identified 128 proteins with catalytic activity characteristics; indicative of proteins involved in digestion, and 35 proteins associated with stress response, host defense, and wound healing functions. Submission of the list of 345 proteins to the BioMart data mining tool in the Ensembl database further allowed us to identify a total of 283 orthologous human genes, of which, 131 proteins were recently reported to be present in the human salivary proteome. CONCLUSIONS: The present study is the most comprehensive list to date of the proteins that constitute the mouse salivary proteome. The data presented can serve as a useful resource for identifying potentially useful biomarkers of human health and disease.

8.
BMC Cancer ; 13: 268, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23721519

RESUMO

BACKGROUND: Defects in tight junctions, gate-keepers of the integrity of the epidermal barrier function, are known to contribute to cancer development. As such, enhancing our understanding of how the expression of proteins involved in these junctions is regulated in cancer, remains a priority. Although the expression of one of these proteins, claudin 1, is down regulated in most invasive human breast cancers (HBC), we have recently shown that high levels of claudin 1, characterized tumors belonging to the very aggressive basal-like breast cancer (BLBC) subtype. In these tumors, the claudin 1 protein, usually localized in the cell membrane, is often mislocalized to the cytoplasm. METHODS: To examine the clinical relevance of this observation, we have generated and analyzed an invasive HBC tissue microarray consisting of 151 breast tumor samples; 79 of which presented a basal-like phenotype (i.e. ER-ve, PR-ve HER2-ve, CK5/6 or EGFR+ve). We also interrogated the outcome of claudin 1 knockdown in a human BLBC cell line, BT-20. RESULTS: Immunohistochemical analysis of this patient cohort revealed a significant association between high claudin 1 expression and BLBCs in women 55 years of age and older. Interestingly, no significant association was found between claudin 1 and nodal involvement, tumor grade or tumor size. Regression analysis however, showed a significant positive association between claudin 1 and claudin 4, even though claudin 4 did not significantly correlate with patient age. Claudin 1 knockdown in BT-20 cells resulted in decreased cell migration. It also significantly altered the expression of several genes involved in epithelial-mesenchymal-transition (EMT); in particular, SERPINE 1 (PAI1) and SSP1 (osteopontin), known to inhibit EMT and cancer cell migration. Conversely, genes known to maintain EMT through their interaction, SNAIL2, TCF4 and FOXC2 were significantly down regulated. CONCLUSIONS: The association of high claudin 1 protein levels observed in tumors derived from older women with BLBC, suggests that claudin 1 has the potential to serve as a marker which can identify a specific subgroup of patients within the BLBC subtype and thus, further contribute to the characterization of these ill-defined breast cancers. More importantly, our studies strongly suggest that claudin 1 directly participates in promoting breast cancer progression, possibly through the alteration of expression of EMT genes.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Claudina-1/biossíntese , Fatores Etários , Idoso , Western Blotting , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Análise Serial de Tecidos
9.
Circ Res ; 108(9): 1084-92, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21415393

RESUMO

RATIONALE: Alternative splicing provides a versatile mechanism by which cells generate proteins with different or even antagonistic properties. Previously, we established hypoxia-inducible death factor Bnip3 as a critical component of the intrinsic death pathway. OBJECTIVE: To investigate alternative splicing of Bnip3 pre-mRNA in postnatal ventricular myocytes during hypoxia. METHODS AND RESULTS: We identify a novel previously unrecognized spliced variant of Bnip3 (Bnip3Δex3) generated by alternative splicing of exon3 exclusively in cardiac myocytes subjected to hypoxia. Sequencing of Bnip3Δex3 revealed a frame shift mutation that terminated transcription up-stream of exon5 and exon6 ablating translation of the BH3-like domain and critical carboxyl-terminal transmembrane domain crucial for mitochondrial localization and cell death. Notably, although the 26-kDa Bnip3 protein (Bnip3FL) encoded by full-length mRNA was localized to mitochondria and provoked cell death, the 8.2-kDa Bnip3Δex3 protein encoded by the truncated spliced mRNA was defective for mitochondrial targeting but interacted with Bnip3FL resulting in less association of Bnip3FL with mitochondria and diminished apoptotic and necrotic cell death. Forced expression of Bnip3FL in cardiac myocytes or Bnip3(-/-) mouse embryonic fibroblasts triggered widespread cell death that was inhibited by coexpression of Bnip3Δex3. Conversely, RNA interference targeted against sequences encompassing the unique exon2-exon4 junction of the Bnip3Δex3 sensitized cardiac myocytes to mitochondrial perturbations and cell death induced by Bnip3FL. CONCLUSIONS: Given the otherwise lethal consequences of deregulated Bnip3FL expression in postmitotic cells, our findings reveal a novel intrinsic defense mechanism that opposes the mitochondrial defects and cell death of ventricular myocytes that is obligatorily linked and mutually dependent on alternative splicing of Bnip3FL during hypoxia or ischemic stress.


Assuntos
Processamento Alternativo/fisiologia , Apoptose/genética , Hipóxia/genética , Proteínas de Membrana/genética , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas/genética , Animais , Sobrevivência Celular/genética , Células Cultivadas , Ventrículos do Coração/citologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Camundongos , Camundongos Mutantes , Mitocôndrias/fisiologia , Proteínas Mitocondriais , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miócitos Cardíacos/citologia , Necrose/genética , Necrose/patologia , Necrose/fisiopatologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
10.
J Histochem Cytochem ; 70(2): 181-187, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34715746

RESUMO

The tight junction membrane protein claudin 1 and the adherens junction protein E-cadherin play critical roles in cell-cell communication and in cell signaling. As a result, their protein levels and distribution in cancer have been a focus of cancer researchers in recent years. The loss of sensitivity to contact inhibition and the establishment of invasive properties in cancer are thought to be a result of the mislocalization of these membrane proteins to the cytoplasm. However, reports on their distribution and levels have been inconsistent. It is therefore critical that the techniques used to determine the cellular localization of these proteins be both consistent and reliable. This study was undertaken to determine the optimal fixation method, methanol or formalin, for the detection of claudin 1 and E-cadherin by immunofluorescence in five different human breast cancer cell lines. Both methods exhibited staining of the cell membrane and cytoplasm, but the strongest and most distinct signals were obtained using methanol fixation. Interestingly, cell-specific differences were also observed that appeared to be associated with levels of claudin 1 and E-cadherin as seen by Western blotting. Therefore, when evaluating cellular localization of the junction proteins claudin 1 and E-cadherin, expression level and cell type differences must be considered.


Assuntos
Antígenos CD/análise , Biomarcadores Tumorais/análise , Neoplasias da Mama/diagnóstico , Caderinas/análise , Western Blotting , Linhagem Celular , Feminino , Humanos , Microscopia de Fluorescência
11.
Nucleic Acids Res ; 37(13): 4518-31, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19483093

RESUMO

Products of the Steroid Receptor RNA Activator gene (SRA1) have the unusual property to modulate the activity of steroid receptors and other transcription factors both at the RNA (SRA) and the protein (SRAP) level. Balance between these two genetically linked entities is controlled by alternative splicing of intron-1, whose retention alters SRAP reading frame. We have previously found that both fully-spliced SRAP-coding and intron-1-containing non-coding SRA RNAs co-exist in breast cancer cell lines. Herein, we report a significant (Student's t-test, P < 0.003) higher SRA-intron-1 relative expression in breast tumors with higher progesterone receptor contents. Using an antisense oligoribonucleotide, we have successfully reprogrammed endogenous SRA splicing and increased SRA RNA-intron-1 relative level in T5 breast cancer cells. This increase is paralleled by significant changes in the expression of genes such as plasminogen urokinase activator and estrogen receptor beta. Estrogen regulation of other genes, including the anti-metastatic NME1 gene, is also altered. Overall, our results suggest that the balance coding/non-coding SRA transcripts not only characterizes particular tumor phenotypes but might also, through regulating the expression of specific genes, be involved in breast tumorigenesis and tumor progression.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Oligorribonucleotídeos Antissenso , RNA não Traduzido/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Estradiol/farmacologia , Feminino , Humanos , Íntrons , Oligorribonucleotídeos Antissenso/química , RNA Longo não Codificante , RNA não Traduzido/química , RNA não Traduzido/genética , Receptores de Progesterona/metabolismo
12.
Cancers (Basel) ; 13(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638283

RESUMO

The tumor microenvironment plays a pivotal role in the tumorigenesis, progression, and metastatic spread of many cancers including breast. There is now increasing evidence to support the observations that a bidirectional interplay between breast cancer cells and stromal cells exists within the tumor and the tumor microenvironment both at the primary tumor site and at the metastatic site. This interaction occurs through direct cell to cell contact, or by the release of autocrine or paracrine factors which can activate pro-tumor signaling pathways and modulate tumor behavior. In this review, we will highlight recent advances in our current knowledge about the multiple interactions between breast cancer cells and neighboring cells (fibroblasts, endothelial cells, adipocytes, innate and adaptive immune cells) in the tumor microenvironment that coordinate to regulate metastasis. We also highlight the role of exosomes and circulating tumor cells in facilitating breast cancer metastasis. We discuss some key markers associated with stromal cells in the breast tumor environment and their potential to predict patient survival and guide treatment. Finally, we will provide some brief perspectives on how current technologies may lead to the development of more effective therapies for the clinical management of breast cancer patients.

13.
J Biomed Biotechnol ; 2010: 956897, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20490282

RESUMO

Claudins are the major component of the tight junctions in epithelial cells and as such play a key role in the polarized location of ion channels, receptors, and enzymes to the different membrane domains. In that regard, claudins are necessary for the harmonious development of a functional epithelium. Moreover, defective tight junctions have been associated with the development of neoplastic phenotype in epithelial cells. Breakdown of cell-cell interactions and deregulation of the expression of junctional proteins are therefore believed to be key steps in invasion and metastasis. Several studies suggest that the claudins are major participants in breast tumorigenesis. In this paper, we discuss recent advances in our understanding of the potential role of claudin 1 in breast cancer. We also discuss the significance of a subset of estrogen receptor negative breast cancers which express "high" levels of the claudin 1 protein. We propose that claudin 1 functions both as a tumor suppressor as well as a tumor enhancer/facilitator in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Claudina-1 , Progressão da Doença , Estrogênios/metabolismo , Feminino , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Fenótipo , Receptores de Estrogênio/metabolismo , Junções Íntimas/metabolismo
14.
Breast Cancer Res ; 11(5): R67, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19740422

RESUMO

INTRODUCTION: The steroid receptor RNA activator is a functional RNA suspected to participate in the mechanisms underlying breast tumor progression. This RNA is also able to encode for a protein, Steroid Receptor RNA Activator Protein (SRAP), whose exact function remains to be determined. Our aim was to assess, in a large breast cancer cohort, whether levels of this protein could be associated with outcome or established clinical parameters. METHODS: Following antibody validation, SRAP expression was assessed by tissue-microarray (TMA) analysis of 372 breast tumors. Clinical follow-up and parameters such as steroid receptor and node status were available for all the corresponding cases. Immunohistochemical scores were independently determined by three investigators and averaged. Statistical analyses were performed using standard univariate and multivariate tests. RESULTS: SRAP levels were significantly (Mann-Whitney rank sum test, P < 0.05) higher in estrogen receptor-alpha positive (ER+, n = 271), in progesterone receptor positive (PR+, n = 257) and in older patients (age > 64 years, n = 182). When considering ER+ tumors, PR+ tumors, or younger patients (< or = 64 years), cases with high SRAP expression had a significantly (Mantel-Cox test, P < 0.05) worse breast cancer specific survival (BCSS) than those with low SRAP levels. SRAP also appeared as a very powerful indicator of poor prognostic for BCSS in the subset of ER+, node negative and young breast cancer patients (Cox regression analysis, n = 60, BCSS Hazard Ratio = 8.61, P < 0.006). CONCLUSIONS: Our data suggest that SRAP levels might provide additional information on potential risk of recurrence and negative outcome in a specific set of patients with otherwise good prognosis when considering only estrogen receptor and nodal status.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , RNA não Traduzido/biossíntese , Receptores de Estrogênio/biossíntese , Western Blotting , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Linfonodos/patologia , Análise em Microsséries/métodos , RNA Longo não Codificante
15.
Acta Biotheor ; 57(4): 419-28, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19774465

RESUMO

The prediction of protein-protein interactions based on independently obtained structural information for each interacting partner remains an important challenge in computational chemistry. Procedures where hypothetical interaction models (or decoys) are generated, then ranked using a biochemically relevant scoring function have been garnering interest as an avenue for addressing such challenges. The program PatchDock has been shown to produce reasonable decoys for modeling the association between pig alpha-amylase and the VH-domains of camelide antibody raised against it. We designed a biochemically relevant method by which PatchDock decoys could be ranked in order to separate near-native structures from false positives. Several thousand steps of energy minimization were used to simulate induced fit within the otherwise rigid decoys and to rank them. We applied a partial free energy function to rank each of the binding modes, improving discrimination between near-native structures and false positives. Sorting decoys according to strain energy increased the proportion of near-native decoys near the bottom of the ranked list. Additionally, we propose a novel method which utilizes regression analysis for the selection of minimization convergence criteria and provides approximation of the partial free energy function as the number of algorithmic steps approaches infinity.


Assuntos
Modelos Químicos , Proteínas/química , Algoritmos , Biologia Computacional , Proteínas/metabolismo , Termodinâmica , alfa-Amilases/química , alfa-Amilases/metabolismo
16.
Transl Oncol ; 12(3): 561-575, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30658316

RESUMO

Recent studies provide compelling evidence to suggest that the tight junction protein claudin 1, aberrantly expressed in several cancer types, plays an important role in cancer progression. Dysregulation of claudin 1 has been shown to induce epithelial mesenchymal transition (EMT). Furthermore, activation of the ERK signaling pathway by protein kinase C (PKC) was shown to be necessary for EMT induction. Whether PKC is involved in regulating breast cancer progression has not been addressed. The PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA) was used to investigate the effect of PKC activity on claudin 1 transcription and protein levels, subcellular distribution, and alterations in EMT markers in human breast cancer (HBC) cell lines. As well, tissue microarray analysis (TMA) of a large cohort of invasive HBC biopsies was conducted to investigate correlations between claudin 1 and PKC isomers. TPA upregulated claudin 1 levels in all HBC cell lines analyzed. In particular, a high induction of claudin 1 protein was observed in the MCF7 cell line. TPA treatment also led to an accumulation of claudin 1 in the cytoplasm. Additionally, we demonstrated that the upregulation of claudin 1 was through the ERK signaling pathway. In patient biopsies, we identified a significant positive correlation between claudin 1, PKCα, and PKCε in ER+ tumors. A similar correlation between claudin 1 and PKCε was identified in ER- tumors, and high PKCε was associated with shorter disease-free survival. Collectively, these studies demonstrate that claudin 1 and the ERK signaling pathway are important players in HBC progression.

17.
J Steroid Biochem Mol Biol ; 109(1-2): 1-10, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18243688

RESUMO

Clinical management of breast cancer is increasingly guided by assessment of tumor phenotypic parameters. One of these is estrogen receptor (ER) status, currently defined by ERalpha expression. However with the discovery of a second ER, ERbeta and its variant isoforms, the definition of ER status is potentially more complex. In breast tumors there are two ERbeta expression cohorts. One where ERbeta is co-expressed with ERalpha and the other expressing ERbeta alone. In the latter subgroup of currently defined ER negative patients ERbeta has the potential to be a therapeutic target. Characterization of the nature and role of ERbeta in ERalpha negative tumors is essentially unexplored but available data suggest that the role of ERbeta may be different when co-expressed with ERalpha and when expressed alone. This review summarizes available data and explores the possibility that ERbeta signaling may be a therapeutic target in these tumors. Evidence so far supports the idea that the role of ERbeta in breast cancer is different in ERalpha negative compared to ERalpha positive tumors. However, cohort size and numbers of independent studies are small to date, and more studies are needed with better standardization of antibodies and protocols. Also, the ability to determine the role of ERbeta in ERalpha negative breast cancer and therefore assess ERbeta signaling pathways as therapeutic targets would be greatly facilitated by identification of specific downstream markers of ERbeta activity in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Especificidade de Anticorpos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/imunologia , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/imunologia , Feminino , Variação Genética , Humanos , Imuno-Histoquímica , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo
18.
Front Biosci ; 12: 2221-32, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17127459

RESUMO

Mammary gland involution represents one of the most dramatic examples of programmed cell death/apoptosis and tissue regression during development, yet large gaps still exist in the understanding of the mechanisms involved, and the key factors that trigger involution, are not yet identified. With the focus on identifying "novel" genes associated with mammary gland regression, we used microarray analysis to examine differentially expressed genes during early mammary gland involution in the mouse. We then examined the relevance of candidate genes to human tumorigenesis and identified a number of genes not previously implicated or not well characterized in human breast cancer. The expression levels of these genes in human breast cancer were confirmed in breast cancer cell lines and breast tumor tissues. This pilot study demonstrates proof of principle that through the analysis of gene expression during mammary gland involution, it may be possible to identify "novel" genes relevant human breast cancer.


Assuntos
Neoplasias da Mama/genética , Genes Neoplásicos , Glândulas Mamárias Animais/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Claudina-1 , Feminino , Perfilação da Expressão Gênica , Humanos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
19.
Front Biosci ; 11: 1577-84, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16368538

RESUMO

Identifying particular motifs responsible for promoter activity is a crucial step toward the development of new gene-based preventive and therapeutic strategies. However, to date, experimental methods to study promoter activity remain limited. We present in this report a promoter competition assay designed to identify, within a given promoter region, motifs critical for its activity. This assay consists in co-transfecting the promoter to be analyzed and double-stranded oligonucleotides which will compete for the binding of transcription factors. Using the recently characterized SBEM promoter as model, we first delineated the feasibility of the method and optimized the experimental conditions. We then identified, within an 87-bp region responsible for a strong expression of the reporter gene, an octamer-binding site essential for its transcriptional regulation. The importance of this motif has been confirmed by site-directed mutagenesis. The promoter competition assay appears to be a fast and efficient approach to identify, within a given promoter sequence, sites critical for its activity.


Assuntos
Genes Reporter , Técnicas Genéticas , Regiões Promotoras Genéticas , Transcrição Gênica , Motivos de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Células Cultivadas , Biologia Computacional , Regulação da Expressão Gênica , Humanos , Luciferases/metabolismo , Modelos Genéticos , Mucinas/metabolismo , Mutagênese Sítio-Dirigida , Fator 1 de Transcrição de Octâmero/metabolismo , Plasmídeos/metabolismo , Fatores de Transcrição/metabolismo , Transfecção
20.
Front Biosci ; 11: 2483-95, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16720387

RESUMO

e human small breast epithelial mucin (SBEM) gene has been identified as being preferentially expressed in mammary epithelial cells and over-expressed in breast tumors. In this report, we have characterized the promoter of SBEM gene in order to identify sequences responsible for this strong mammary expression. A series of SBEM promoter/luciferase constructs were transiently transfected into both breast (MCF-7, BT-20) and non-breast (HeLa and HepG2) cell lines. In addition to the minimal promoter and to a repressor region, we have identified an 87-bp sequence (-357/-270) driving a strong breast-specific expression. Site-directed mutagenesis of a putative octamer-binding transcription factor binding site located within this latter region led to a strong decrease of the transcriptional activity of the SBEM promoter. Furthermore, transient over-expression of Oct1 and Oct2 not only increased SBEM promoter reporter activity, but also enhanced endogenous SBEM mRNA level. Overall, the data suggest that octamer-binding transcription factors participate in the strong expression of SBEM gene in breast tissues. Clarifying the SBEM gene regulation will help to dissect mechanisms underlying transcription of normal breast and breast cancer-associated genes.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Mucinas/biossíntese , Mucinas/genética , Fatores de Transcrição de Octâmero/metabolismo , Sítios de Ligação , Neoplasias da Mama/patologia , Carcinoma Hepatocelular/patologia , Feminino , Células HeLa , Humanos , Neoplasias Hepáticas/patologia , Mutagênese Sítio-Dirigida , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Transportador 1 de Cátions Orgânicos/fisiologia , Transportador 2 de Cátion Orgânico , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA