Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant Cell ; 36(3): 709-726, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38000892

RESUMO

Fruit softening, an irreversible process that occurs during fruit ripening, can lead to losses and waste during postharvest transportation and storage. Cell wall disassembly is the main factor leading to loss of fruit firmness, and several ripening-associated cell wall genes have been targeted for genetic modification, particularly pectin modifiers. However, individual knockdown of most cell wall-related genes has had minimal influence on cell wall integrity and fruit firmness, with the notable exception of pectate lyase. Compared to pectin disassembly, studies of the cell wall matrix, the xyloglucan-cellulose framework, and underlying mechanisms during fruit softening are limited. Here, a tomato (Solanum lycopersicum) fruit ripening-associated α-expansin (SlExpansin1/SlExp1) and an endoglucanase (SlCellulase2/SlCel2), which function in the cell wall matrix, were knocked out individually and together using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9-mediated genome editing. Simultaneous knockout of SlExp1 and SlCel2 enhanced fruit firmness, reduced depolymerization of homogalacturonan-type pectin and xyloglucan, and increased cell adhesion. In contrast, single knockouts of either SlExp1 or SlCel2 did not substantially change fruit firmness, while simultaneous overexpression of SlExp1 and SlCel2 promoted early fruit softening. Collectively, our results demonstrate that SlExp1 and SlCel2 synergistically regulate cell wall disassembly and fruit softening in tomato.


Assuntos
Celulase , Solanum lycopersicum , Frutas/metabolismo , Solanum lycopersicum/genética , Celulase/genética , Celulase/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pectinas/metabolismo , Parede Celular/metabolismo
2.
Plant Physiol ; 192(3): 1671-1683, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823689

RESUMO

Excessive softening during fleshy fruit ripening leads to physical damage and infection that reduce quality and cause massive supply chain losses. Changes in cell wall (CW) metabolism, involving loosening and disassembly of the constituent macromolecules, are the main cause of softening. Several genes encoding CW metabolizing enzymes have been targeted for genetic modification to attenuate softening. At least 9 genes encoding CW-modifying proteins have increased expression during ripening. Any alteration of these genes could modify CW structure and properties and contribute to softening, but evidence for their relative importance is sparse. The results of studies with transgenic tomato (Solanum lycopersicum), the model for fleshy fruit ripening, investigations with strawberry (Fragaria spp.) and apple (Malus domestica), and results from naturally occurring textural mutants provide direct evidence of gene function and the contribution of CW biochemical modifications to fruit softening. Here we review the revised CW structure model and biochemical and structural changes in CW components during fruit softening and then focus on and integrate the results of changes in CW characteristics derived from studies on transgenic fruits and mutants. Potential strategies and future research directions to understand and control the rate of fruit softening are also discussed.


Assuntos
Frutas , Malus , Frutas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malus/genética , Malus/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Physiol Plant ; 176(2): e14242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439528

RESUMO

The CONSTANS/CONSTANS-Like (CO/COL) family has been shown to play important roles in flowering, stress tolerance, fruit development and ripening in higher plants. In this study, three COL genes, MiCOL6, MiCOL7A and MiCOL7B, which each contain only one CCT domain, were isolated from mango (Mangifera indica), and their functions were investigated. MiCOL7A and MiCOL7B were expressed mainly at 20 days after flowering (DAF), and all three genes were highly expressed during the flowering induction period. The expression levels of the three genes were affected by light conditions, but only MiCOL6 exhibited a clear circadian rhythm. Overexpression of MiCOL6 promoted earlier flowering, while overexpression of MiCOL7A or MiCOL7B delayed flowering compared to that in the control lines of Arabidopsis thaliana under long-day (LD) and short-day (SD) conditions. Overexpressing MiCOL6, MiCOL7A or MiCOL7B in transgenic plants increased superoxide dismutase (SOD) and proline levels, decreased malondialdehyde (MAD) levels, and improved survival under drought and salt stress. In addition, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses showed that the MiCOL6, MiCOL7A and MiCOL7B proteins interact with several stress- and flower-related proteins. This work demonstrates the functions of MiCOL6, MiCOL7A and MiCOL7B and provides a foundation for further research on the role of mango COL genes in flowering regulation and the abiotic stress response.


Assuntos
Arabidopsis , Mangifera , Mangifera/genética , Arabidopsis/genética , Ritmo Circadiano , Secas , Flores/genética , Saccharomyces cerevisiae
4.
BMC Pulm Med ; 24(1): 242, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755605

RESUMO

INTRODUCTION: Lung cancer is a common malignant tumor, and different types of immune cells may have different effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is still unclear. METHODS: This study utilized a comprehensive dataset containing 731 immune phenotypes from the European Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings. RESULTS: Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627-1.1344, p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177-0.9625, p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established between any immune cell phenotypes and LUAD. CONCLUSION: This study demonstrates that specific immune cell types are associated with the risk of LUSC but not with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future therapeutic strategies and preventive measures.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Análise da Randomização Mendeliana , Fenótipo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Receptores CCR2/genética , Linfócitos T CD8-Positivos/imunologia , Antígenos CD28/genética
5.
J Integr Plant Biol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896078

RESUMO

Phytohormones, epigenetic regulation and environmental factors regulate fruit ripening but their interplay during strawberry fruit ripening remains to be determined. In this study, bagged strawberry fruit exhibited delayed ripening compared with fruit grown in normal light, correlating with reduced abscisic acid (ABA) accumulation. Transcription of the key ABA catabolism gene, ABA 8'-hydroxylase FaCYP707A4, was induced in bagged fruit. With light exclusion whole genome DNA methylation levels were up-regulated, corresponding to a delayed ripening process, while DNA methylation levels in the promoter of FaCYP707A4 were suppressed, correlating with increases in transcript and decreased ABA content. Experiments indicated FaCRY1, a blue light receptor repressed in bagged fruit and FaAGO4, a key protein involved in RNA-directed DNA methylation, could bind to the promoter of FaCYP707A4. The interaction between FaCRY1 and FaAGO4, and an increased enrichment of FaAGO4 directed to the FaCYP707A4 promoter in fruit grown under light suggests FaCRY1 may influence FaAGO4 to modulate the DNA methylation status of the FaCYP707A4 promoter. Furthermore, transient overexpression of FaCRY1, or an increase in FaCRY1 transcription by blue light treatment, increases the methylation level of the FaCYP707A4 promoter, while transient RNA interference of FaCRY1 displayed opposite phenotypes. These findings reveal a mechanism by which DNA methylation influences ABA catabolism, and participates in light-mediated strawberry ripening.

6.
Plant Physiol ; 188(1): 318-331, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34618124

RESUMO

Petals of the monocot Phalaenopsis aphrodite (Orchidaceae) possess conical epidermal cells on their adaxial surfaces, and a large amount of cuticular wax is deposited on them to serve as a primary barrier against biotic and abiotic stresses. It has been widely reported that subgroup 9A members of the R2R3-MYB gene family, MIXTA and MIXTA-like in eudicots, act to regulate the differentiation of conical epidermal cells. However, the molecular pathways underlying conical epidermal cell development and cuticular wax biosynthesis in monocot petals remain unclear. Here, we characterized two subgroup 9A R2R3-MYB genes, PaMYB9A1 and PaMYB9A2 (PaMYB9A1/2), from P. aphrodite through the transient overexpression of their coding sequences and corresponding chimeric repressors in developing petals. We showed that PaMYB9A1/2 function to coordinate conical epidermal cell development and cuticular wax biosynthesis. In addition, we identified putative targets of PaMYB9A1/2 through comparative transcriptome analyses, revealing that PaMYB9A1/2 acts to regulate the expression of cell wall-associated and wax biosynthetic genes. Furthermore, a chemical composition analysis of cuticular wax showed that even-chain n-alkanes and odd-chain primary alcohols are the main chemical constituents of cuticular wax deposited on petals, which is inconsistent with the well-known biosynthetic pathways of cuticular wax, implying a distinct biosynthetic pathway occurring in P. aphrodite flowers. These results reveal that the function of subgroup 9A R2R3-MYB family genes in regulating the differentiation of epidermal cells is largely conserved in monocots and dicots. Furthermore, both PaMYB9A1/2 have evolved additional functions controlling the biosynthesis of cuticular wax.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/genética , Orchidaceae/metabolismo , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Ceras/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Morfogênese/genética , Plantas Geneticamente Modificadas
7.
J Integr Plant Biol ; 64(9): 1649-1672, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35731033

RESUMO

Fleshy fruit texture is a critically important quality characteristic of ripe fruit. Softening is an irreversible process which operates in most fleshy fruits during ripening which, together with changes in color and taste, contributes to improvements in mouthfeel and general attractiveness. Softening results mainly from the expression of genes encoding enzymes responsible for cell wall modifications but starch degradation and high levels of flavonoids can also contribute to texture change. Some fleshy fruit undergo lignification during development and post-harvest, which negatively affects eating quality. Excessive softening can also lead to physical damage and infection, particularly during transport and storage which causes severe supply chain losses. Many transcription factors (TFs) that regulate fruit texture by controlling the expression of genes involved in cell wall and starch metabolism have been characterized. Some TFs directly regulate cell wall targets, while others act as part of a broader regulatory program governing several aspects of the ripening process. In this review, we focus on advances in our understanding of the transcriptional regulatory mechanisms governing fruit textural change during fruit development, ripening and post-harvest. Potential targets for breeding and future research directions for the control of texture and quality improvement are discussed.


Assuntos
Frutas , Melhoramento Vegetal , Parede Celular/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo
8.
IUBMB Life ; 71(7): 942-955, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30817091

RESUMO

Kinesin family member 18A (KIF18A), as a member of the kinesin superfamily, is significantly overexpressed and abnormally functions in various human cancers. But, its expression profiling in the lung adenocarcinoma (LUAD) remains unclear. In the present work, using the data derived from the Cancer Genome Atlas (TCGA), we assessed the expression pattern and prognostic value of KIF18A in LUAD. In addition, we analyzed the underlying mechanism of its gene dysregulation. Experimental and bioinformatic analysis results showed that KIF18A expression was dramatically increased in LUAD tissues compared with the normal counterparts. Moreover, the patients with high KIF18A expression had significantly poorer overall survival (OS) and recurrence-free survival (RFS). Univariate and multivariate analyses indicated that increased KIF18A expression was independently associated with unfavorable OS and RFS. In addition, by analyzing deep sequencing data from TCGA-LUAD, we found that KIF18A mutation was detected in 2.6% of LUAD cases, and increased KIF18A expression was associated with genetic amplification rather than DNA methylation. Moreover, gene co-expression network analysis revealed that a total of 339 KIF18A co-expressed genes were detected and enriched in several tumor-related pathways, especially cell cycle. Knockdown of KIF18A significantly inhibited cell proliferation in vitro and in vivo. Furthermore, silencing KIF18A induced LUAD cells apoptosis and arrested the cell cycle in the G2/M phase. KIF18A promotes cell proliferation, inhibits apoptosis, and is a valuable prognostic predictor and potential therapeutic target for the patients with LUAD. © 2019 IUBMB Life, 2019.


Assuntos
Adenocarcinoma de Pulmão/patologia , Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Cinesinas/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Idoso , Animais , Biomarcadores Tumorais/genética , Ciclo Celular , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Cinesinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
BMC Genet ; 19(1): 12, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29439656

RESUMO

BACKGROUND: Loropetalum subcordatum is an endangered species endemic to China that is characterized by narrow distribution, small population size, and delayed fertilization. However, the genetic diversity of the entire extant natural and ex situ populations has not been assessed to date. In this study, we evaluated the genetic diversity and structure of six natural populations and a single ex situ population (the only known ex situ population of L. subcordatum) using sequence-related amplified polymorphism data. RESULTS: In total, 553 reliable DNA bands, of which 359 (63.28%) were polymorphic, were amplified by polymerase chain reaction with combinations of 15 primers. Low average gene diversity within populations and high genetic differentiation were detected in L. subcordatum. A Mantel test demonstrated that there was a positive correlation between genetic and geographic distances, indicating that significant genetic divergence was likely the result of geographic isolation among natural populations. Furthermore, based on genetic structure patterns, populations of L. subcordatum were divided into three clusters. Group 1 was composed of specimens from Libo, Guizhou Province (GZ) and Huanjiang, Guangxi Zhuang Autonomous Region (GX). Group 2 was composed of Mt. Wuguishan, Guangdong Province (GD). Group 3 was composed of three populations in Hong Kong Special Administrative Region. Additionally, clonal reproduction probably existed in GD population. According to the genetic information analysis and field survey, the ex situ population did not match its source population (GD) in terms of genetics, and its habitat was different from the original natural habitat. We observed that a few individual GD seeds were needed to improve ZS ex situ in the future. CONCLUSIONS: Compared to previous SRAP-based studies of endangered plants, L. subcordatum had extremely low average gene diversity within populations and high genetic differentiation among populations. At present, the unique ex situ population has not been successful due to non-representative samples being taken, a smaller population size, and man-made changes in habitat. Potential strategies are suggested to improve the conservation of this species.


Assuntos
Espécies em Perigo de Extinção , Hamamelidaceae/genética , Filogeografia , Polimorfismo Genético , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , China , Hamamelidaceae/classificação , Densidade Demográfica
10.
Int J Med Sci ; 15(8): 796-801, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008589

RESUMO

Purpose: To evaluate the efficacy and safety of nucleos(t)ide analogues, especially telbivudine (LdT) for the prevention of mother-to-child transmission (MTCT) of hepatitis B virus (HBV) in women with high viremia. Methods: We conducted a prospective, open-label, multicenter study of LdT for treating pregnant women having high viral loads of hepatitis B virus (HBV DNA>5 log10 IU/mL) but normal levels of alanine aminotransferase (ALT). Maternal HBV DNA, HBV serologic status and ALT were measured at baseline, 4 weeks after therapy, before delivery, 4 weeks after delivery, and 12 weeks after delivery. Infant HBV serologic status and HBV DNA levels were measured at 7 months. We calculated the MTCT rate of LdT-treated and LdT-untreated groups and analyzed the efficacy and safety of LdT. Results: Ninety-one women (the treatment group) were treated with LdT, and twenty-one patients (the observation group) did not undergo antiviral therapy. The baseline HBV DNA levels were 8.15±0.82 log10 IU/mL in the treatment group, and 8.09±1.04 log10 IU/mL in the observation group. The MTCT rate was 0% in the treatment group, and 9.5% in the observation group (p=0.042). In the treatment group, HBV DNA levels were 5.02±0.74 log10 IU/mL at one month after therapy, and 3.95±0.94 log10 IU/mL before delivery. Both groups had significant differences from baseline levels in HBV DNA levels (p<0.001). In total, five patients had elevated ALT levels but without evidence of decompensate liver function. No severe adverse events or complications were observed in women or infants. Conclusions: For pregnant women with HBV DNA greater than 5 log10IU/mL, LdT therapy was effective in reducing HBV MTCT. If serum HBV DNA was detectable at delivery, discontinuation of LdT immediately was found to be safe and rarely induced off-treatment hepatitis flare.


Assuntos
Hepatite B Crônica/transmissão , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Telbivudina/uso terapêutico , Viremia , Adulto , Antivirais , China , DNA Viral , Feminino , Antígenos E da Hepatite B , Vírus da Hepatite B , Hepatite B Crônica/prevenção & controle , Humanos , Recém-Nascido , Gravidez , Complicações Infecciosas na Gravidez , Estudos Prospectivos , Adulto Jovem
11.
Acta Biochim Biophys Sin (Shanghai) ; 48(8): 732-40, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27421659

RESUMO

Diabetic retinopathy (DR) is the leading cause of new-onset blindness. The roles of microRNAs in diabetic retinopathy are largely unknown. The aim of this study is to investigate the role of miR-20b in DR. Transfection of miR-20b mimic in high glucose (HG)-treated human retinal endothelial cells (HRECs) increased miR-20b expression and decreased the expression level of VEGF mRNA, while transfection of miR-20b inhibitor in control HRECs reduced the miR-20b expression with a corresponding increase of VEGF mRNA. In vitro functional assay showed that transfection of miR-20b mimic prevented HG-induced increase in transendothelial permeability and tube formation in HRECs. Transfection of miR-20b inhibitor or treatment of VEGF increased transendothelial permeability and tube formation in control HRECs. Luciferase reported assay showed that AKT3 is a target of miR-20b. Transfection of miR-20b mimic prevented the up-regulation of AKT3 induced by HG without changing the protein levels of other isoforms of AKT, and silencing of AKT3 caused decrease of VEGF mRNA and protein levels as well as prevented HG-induced increase in transendothelial permeability and tube formation. Finally, we showed that miR-20b was down-regulated in the retina and retinal endothelial cells in diabetic rats, with a correlated up-regulation of VEGF and AKT3. Intravitreal injection of miR-20b mimic in the diabetic rat significantly increased the miR-20b expression and decreased the expression levels of AKT3 and VEGF in the retina tissues, and intravitreal delivery of AKT3 siRNA in the diabetic rat significantly decreased the expressions of AKT3 and VEGF. Collectively, miR-20b is important for the regulation of VEGF-mediated changes in HRECs and rat retinal tissues under hyperglycemic conditions possibly via targeting AKT3.


Assuntos
Retinopatia Diabética/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Células Cultivadas , Retinopatia Diabética/metabolismo , Humanos , RNA Mensageiro/genética , Ratos , Retina/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
ACS Appl Mater Interfaces ; 16(20): 26634-26642, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722947

RESUMO

Achieving selective transport of monovalent metal ions with high precision and permeability analogues to biological protein ion channels has long been explored for fundamental research and various applications, such as ion sieving, mineral extraction, and energy harvesting and conversion. However, it still remains a significant challenge to construct artificial nanofluidic devices to realize the trade-off effects between selective ion transportation and high ion permeability. In this work, we report a bioinspired functional micropipet with in situ growth of crown ether-encapsulated metal-organic frameworks (MOFs) inside the tip and realize selective transport of monovalent metal ions. The functional ion-selective micropipet with sub-nanochannels was constructed by the interfacial growth method with the formation of composite MOFs consisting of ZIF-8 and 15-crown-5. The resulting micropipet device exhibited obvious monovalent ion selectivity and high flux of Li+ due to the synergistic effects of size sieving in subnanoconfined space and specific coordination of 15-crown-5 toward Na+. The selectivity of Li+/Na+, Li+/K+, Li+/Ca2+, and Li+/Mg2+ with 15-crown-5@ZIF-8-functionalized micropipet reached 3.9, 5.2, 105.8, and 122.4, respectively, which had an obvious enhancement compared to that with ZIF-8. Notably, the ion flux of Li+ can reach up to 93.8 ± 3.6 mol h-1·m-2 that is much higher than previously reported values. Furthermore, the functional micropipet with 15-crown-5@ZIF-8 sub-nanochannels exhibited stable Li+ selectivity under various conditions, such as different ion concentrations, pH values, and mixed ion solutions. This work not only provides new opportunities for the development of MOF-based nanofluidic devices for selective ion transport but also facilitates the promising practical applications in lithium extraction from salt-like brines, sewage treatment, and other related aspects.

13.
Nat Med ; 30(2): 455-462, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297093

RESUMO

Reducing hepatitis B virus (HBV) mother-to-child transmission (MTCT) is a fundamental step toward the HBV elimination goal. The multicentred, multilevel SHIELD program aimed to use an intense intervention package to reduce HBV MTCT in China. This study was conducted in diverse health settings across China, encompassing 30,109 pregnant women from 178 hospitals, part of the interim analysis of stage II of the SHIELD program, and 8,642 pregnant women from 160 community-level health facilities in stage III of the SHIELD program. The study found that the overall MTCT rate was 0.23% (39 of 16,908; 95% confidence interval (CI): 0.16-0.32%) in stage II and 0.23% (12 of 5,290; 95% CI: 0.12-0.40%) in stage III. The MTCT rate was lower among participants who were compliant with the interventions (stage II: 0.16% (95% CI: 0.10-0.26%); stage III: 0.03% (95% CI: 0.00-0.19%)) than among those who were noncompliant (3.16% (95% CI: 1.94-4.85%); 1.91% (95% CI: 0.83-3.73%); P < 0.001). Our findings demonstrate that the comprehensive interventions among HBV-infected pregnant women were feasible and effective in dramatically reducing MTCT.


Assuntos
Hepatite B , Complicações Infecciosas na Gravidez , Feminino , Humanos , Gravidez , Vírus da Hepatite B , Complicações Infecciosas na Gravidez/epidemiologia , Complicações Infecciosas na Gravidez/prevenção & controle , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , China/epidemiologia , Hospitais , Hepatite B/epidemiologia , Hepatite B/prevenção & controle
14.
Mol Cell Biochem ; 375(1-2): 11-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275087

RESUMO

Both matrix metalloproteinase-9 (MMP9) and transforming growth factors-ß1 (TGF-ß1) are the important factors in the pathogenesis of the aortic aneurysm (AA) and aortic dissection (AD). Recent studies have shown that inhibition of reactive oxygen species (ROS) production, extracellular signal-regulated kinase 1/2(ERK1/2) or NF-κB pathways is able to suppress aneurysm formation. The median layers of arterial walls are mainly the vascular smooth muscle cells (VSMCs), while the pathogenesis of AA and AD is closely related to the changes in the median layer structure. Thus, we investigated the molecular mechanisms underlying TGF-ß1-induced MMP-9 expression in VSMC, the involvement of intracellular ROS and signaling molecules, including ERK1/2 and NF-κB. Rat vascular smooth muscle cells (A7r5) were used. MMP-9 expression was analyzed by gelatin zymography, western blot and RT-PCR. The involvement of intracellular ROS and signaling molecules including ERK1/2 and NF-κB in the responses was investigated using reactive oxygen scavenger N-acetylcysteine (NAC) and pharmacological inhibitors (U0126 and BAY11-7082), determined by ROS testing and western blot testing for their corresponding proteins. TGF-ß1 induces MMP-9 expression via ROS-dependent signaling pathway. ROS production leads to activation of ERK1/2 and then activation of the NF-κB transcription factor. Activated NF-κB turns on transcription of the MMP-9 gene. The process in which TGF-ß1 induces MMP9 expression involves the ROS-dependent ERK-NF-κB signal pathways in VSMC. This discovery raises a new regulation pathway in the VSMC, and it shows the potential to help to find a new solution to treating aortic aneurysm and aortic dissection.


Assuntos
Metaloproteinase 9 da Matriz/genética , Miócitos de Músculo Liso/enzimologia , Fator de Crescimento Transformador beta1/fisiologia , Animais , Linhagem Celular , Indução Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Músculo Liso Vascular/citologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo
15.
Histol Histopathol ; 38(3): 349-357, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36169116

RESUMO

Lung cancer is characterized by its high mortality and morbidity. A deep understanding of the molecular mechanisms of lung cancer tumorigenesis helps to develop novel lung cancer diagnostic and therapeutic strategies. However, the picture of the associated molecular landscape is not yet complete. As understood, chemokine-receptor interactions contribute much to lung cancer tumorigenesis, in which CCR10 also plays an important role. This study aimed to expand the knowledge of CCR10 in lung squamous cell carcinoma (LUSC) in the manner of molecular mechanism and biological functions. Using GEPIA database, the survival analysis between LUSC patients with high and low CCR10 expressions was performed, showing that CCR10 could be regarded as a risk factor for LUSC patients. Subsequently, CCR10 protein and mRNA expressions in LUSC were examined by qRT-PCR and western blot respectively. The results indicated that CCR10 was highly expressed in LUSC cells. The results of CCK-8, colony formation, and Transwell assays presented that CCL27, the ligand of CCR10, promoted proliferative, migratory, and invasive abilities of LUSC cells by activating CCR10. Also, the PI3K/AKT signaling pathway was verified as the involved pathway by western blot. Overall, it could be concluded that the CCL27-CCR10 regulatory axis can activate the PI3K/AKT pathway fostering the malignant features of LUSC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Carcinogênese/genética , Proliferação de Células , Pulmão/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores CCR10/genética , Receptores CCR10/metabolismo , Quimiocina CCL27/genética , Quimiocina CCL27/metabolismo
16.
ACS Appl Mater Interfaces ; 15(37): 44001-44011, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671797

RESUMO

The increased popularity of wearable electronic devices has led to a greater need for advanced sensors. However, fabricating pressure sensors that are flexible, highly sensitive, robust, and compatible with large-scale fabrication technology is challenging. This work investigates a piezoresistive sensor constructed from an MXene/MoS2 hierarchical nanostructure, which is obtained through an easy and inexpensive fabrication process. The sensor exhibits a high sensitivity of 0.42 kPa-1 (0-1.5 kPa), rapid response (∼36 ms), and remarkable mechanical durability (∼10,000 cycles at 13 kPa). The sensor has been demonstrated to be successful in detecting human motion, speech recognition, and physiological signals, particularly in analyzing human pulse. These data can be used to alert and identify irregularities in human health. Additionally, the sensing units are able to construct sensor arrays of various sizes and configurations, enabling pressure distribution imaging in a variety of application scenarios. This research proposes a cost-effective and scalable approach to fabricating piezoresistive sensors and sensor arrays, which can be utilized for monitoring human health and for use in human-machine interfaces.


Assuntos
Molibdênio , Nanoestruturas , Humanos , Frequência Cardíaca , Movimento (Física)
17.
Front Plant Sci ; 14: 1117156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794230

RESUMO

As a canonical non-climacteric fruit, strawberry (Fragaria spp.) ripening is mainly mediated by abscisic acid (ABA), which involves multiple other phytohormone signalings. Many details of these complex associations are not well understood. We present an coexpression network, involving ABA and other phytohormone signalings, based on weighted gene coexpression network analysis of spatiotemporally resolved transcriptome data and phenotypic changes of strawberry receptacles during development and following various treatments. This coexpression network consists of 18,998 transcripts and includes transcripts related to phytohormone signaling pathways, MADS and NAC family transcription factors and biosynthetic pathways associated with fruit quality. Members of eight phytohormone signaling pathways are predicted to participate in ripening and fruit quality attributes mediated by ABA, of which 43 transcripts were screened to consist of the hub phytohormone signalings. In addition to using several genes reported from previous studies to verify the reliability and accuracy of this network, we explored the role of two hub signalings, small auxin up-regulated RNA 1 and 2 in receptacle ripening mediated by ABA, which are also predicted to contribute to fruit quality. These results and publicly accessible datasets provide a valuable resource to elucidate ripening and quality formation mediated by ABA and involves multiple other phytohormone signalings in strawberry receptacle and serve as a model for other non-climacteric fruits.

18.
J Pain Res ; 15: 3833-3846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36510617

RESUMO

Background: Osteoarthritis(OA) is one of the most common joint diseases, and signaling pathways play an essential role in the occurrence and development of OA, so it is significant to study OA with signaling pathways as an entry point. Purpose: This study aims to visualize and map the knowledge of OA-related signaling pathway research between 2012 and 2022, summarise and analyze the current research status and potential development trends in the domain, and provide a reference for future OA-related research. Methods: Retrieve relevant literature from the Web of Science database and use VOSviwer and CiteSpace software to visualize authors, institutions, country distribution, references, and keywords. The results are interpreted and analyzed in conjunction with the results obtained. Results: According to the search strategy, a total of 4894 articles were published between January 2012 and January 2022; during these ten years, the number of reports increased annually, and the research became further intensive; through this analysis, it was found that China is the most prolific country in this field; The institution with the most articles was Xi'an Jiaotong University from China, and the most prolific author was Tang Chih Hsin; Among the cited references, the reports of Glyn-Jones S and Hunter DJ were ranked first and second respectively. In the keyword analysis, cartilage and expression were the popular keywords; Animal model, akt, and platelet-rich plasma had the highest centrality; Burst analysis revealed pi3k, senescence, Ampk, and exosomes had received more attention in recent years of research. Conclusion: This study analyzes and summarizes the current research status and development trend of relevant signaling pathways in OA from the perspective of bibliometric and visual analysis, which can help researchers to keep track of hot topics and conduct more in-depth exploration of research hotspots and frontier knowledge areas.

19.
Hortic Res ; 9: uhac089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795383

RESUMO

Abscisic acid (ABA) is a dominant regulator of ripening and quality in non-climacteric fruits. Strawberry is regarded as a model non-climacteric fruit due to its extensive genetic studies and proven suitability for transgenic approaches to understanding gene function. Strawberry research has contributed to studies on color, flavor development, and fruit softening, and in recent years ABA has been established as a core regulator of strawberry fruit ripening, whereas ethylene plays this role in climacteric fruits. Despite this major difference, several components of the interacting genetic regulatory network in strawberry, such as MADS-box and NAC transcription factors, are similar to those that operate in climacteric fruit. In this review, we summarize recent advances in understanding the role of ABA biosynthesis and signaling and the regulatory network of transcription factors and other phytohormones in strawberry fruit ripening. In addition to providing an update on its ripening, we discuss how strawberry research has helped generate a broader and more comprehensive understanding of the mechanism of non-climacteric fruit ripening and focus attention on the use of strawberry as a model platform for ripening studies.

20.
Oncol Rep ; 48(1)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35656882

RESUMO

Excision repair cross­complementation group 6 like (ERCC6L) has been reported to be upregulated in a variety of malignant tumors and plays a critical oncogenic role. However, the role and molecular mechanism of ERCC6L in lung adenocarcinoma (LUAD) remain unclear, and were therefore investigated in the present study. Clinical data of patients with LUAD were obtained and bioinformatics analysis was performed to investigate the expression characteristics, prognostic value, and biological function of ERCC6L. In addition, cell function experiments were performed to detect the effect of ERCC6L silencing on the biological behavior of LUAD cells. The results revealed that ERCC6L expression was significantly higher in LUAD tissues vs. normal lung tissues and closely associated with nodal invasion, advanced clinical stage and survival in LUAD. Overexpression of ERCC6L was an independent prognostic biomarker of overall survival, progression­free interval, and disease­specific survival in patients with LUAD. DNA amplification and low methylation levels of ERCC6L suggested regulation at both the genetic and epigenetic levels. The most significant positive genes co­expressed with ERCC6L were mainly enriched in the cell cycle signaling pathway. The major functions of ERCC6L in LUAD cells were positively correlated with the cell cycle, DNA damage, DNA repair, proliferation, invasion and epithelial­mesenchymal transition (EMT). Knockdown of ERCC6L inhibited the proliferative, migratory and invasive abilities of A549 and PC9 cells. It also promoted cell apoptosis, and led to cell cycle arrest in the S phase. ERCC6L may regulate the EMT process through the Wnt/ß­catenin and Wnt/Notch 3 signaling pathways, thus regulating the tumorigenesis and progression of LUAD. The overexpression of ERCC6L may be a biological indicator for the diagnosis and prognosis of LUAD. ERCC6L may be a novel molecular target for the treatment of lung cancer.


Assuntos
Adenocarcinoma de Pulmão , DNA Helicases , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/patologia , Proliferação de Células/genética , DNA , DNA Helicases/genética , Humanos , Neoplasias Pulmonares/patologia , Fenótipo , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA