Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Opt Express ; 32(7): 12708-12723, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571086

RESUMO

Based on the theory of the microwave photonic filter (MPF), to our knowledge, a novel fiber Bragg grating (FBG) wavelength demodulation method based on time-domain detection is proposed. The method uses VNA (vector network analyzer) to measure the S21 parameter of the sensor system, and converts them to the time-domain through inverse discrete Fourier transform (IDFT), The wavelength demodulation and positioning of FBG can be realized by measuring the amplitude and position of the time-domain peak. In order to improve the number of FBG multiplexes, a method is proposed to eliminate the effect of spectrum overlap by normalization in the case of two FBGs and three FBGs. The experimental results show that the temperature sensitivity is 0.00503 RAC/°C, the positioning resolution of the system is 1.25 cm, and the limit of the wavelength difference between two FBGs allowed by the system is 0.25 nm. This method has the advantages of high demodulation precision, strong multiplexing ability and high precision positioning, and has broad application prospects.

2.
Mol Biol Rep ; 51(1): 123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227062

RESUMO

BACKGROUND: Roux-en-Y gastric bypass surgery (RYGB) improves glucose-stimulated insulin secretion (GSIS) in type 2 diabetes (T2D) patients. SNAP25 plays an essential role in GSIS. Clinical studies indicate that enhanced GLP-1 signaling is an important contributor to the improved ß-cell function in T2D. We aimed to explore whether GLP-1-regulated SNAP25 is involved in the enhanced secretory function of ß-cells in diabetic Goto-Kakizaki (GK) rats after RYGB. METHODS AND RESULTS: RYGB or sham surgery was conducted in GK rats. mRNA and protein expression of SNAP25 was assessed by qPCR and Western blot, respectively. Occupancy of CREB and acetyltransferase CBP and acetylation of histone H3 (ACH3) at the Snap25 promoter were determined using ChIP assay. RYGB led to increased SNAP25 expression and CREB phosphorylation in islets from GK rats. Increased SNAP25 improved GSIS in ß-cells cultured in high glucose conditions. Consistent with increased plasma GLP-1 after RYGB, GLP-1R agonist exendin4 increased SNAP25 expression and CREB phosphorylation in ß-cells. Mechanistically, exendin4 promoted the recruitment of CREB and CBP, thereby increasing ACH3 at the Snap25 promoter. Consistently, inhibition of CBP attenuated the effect of exendin4 on SNAP25 expression. Furthermore, the knockdown of SNAP25 diminished the increase of GSIS potentiated by chronic GLP-1 culture in INS-1 832/13 cells. CONCLUSIONS: Our findings unravel the novel mechanisms of RYGB-enhanced SNAP25 expression in ß-cells, and SNAP25 may contribute to the improved ß-cell secretory function induced by RYGB.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Secreção de Insulina , Proteína 25 Associada a Sinaptossoma , Animais , Ratos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/cirurgia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose , Histonas , Proteína 25 Associada a Sinaptossoma/genética
3.
BMC Nephrol ; 25(1): 64, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395806

RESUMO

BACKGROUND: Oxidative stress has been implicated in the pathogenesis of chronic kidney disease (CKD), prompting the exploration of antioxidants as a potential therapeutic avenue for mitigating disease progression. This study aims to investigate the beneficial impact of Tempol on the progression of CKD in a rat model utilizing oxidized albumin as a biomarker. METHODS: After four weeks of treatment, metabolic parameters, including body weight, left ventricle residual weight, kidney weight, urine volume, and water and food intake, were measured. Systolic blood pressure, urinary protein, oxidized albumin level, serum creatinine (Scr), blood urea nitrogen (BUN), 8-OHdG, TGF-ß1, and micro-albumin were also assessed. Renal fibrosis was evaluated through histological and biochemical assays. P65-NF-κB was quantified using an immunofluorescence test, while Smad3, P65-NF-κB, and Collagen I were measured using western blot. TNF-α, IL-6, MCP-1, TGF-ß1, Smad3, and P65-NF-κB were analyzed by RT-qPCR. RESULTS: Rats in the high-salt diet group exhibited impaired renal function, characterized by elevated levels of blood urea nitrogen, serum creatinine, 8-OHdG, urine albumin, and tubulointerstitial damage, along with reduced body weight. However, these effects were significantly ameliorated by Tempol administration. In the high-salt diet group, blood pressure, urinary protein, and oxidized albumin levels were notably higher compared to the normal diet group, but Tempol administration in the treatment group reversed these effects. Rats in the high-salt diet group also displayed increased levels of proinflammatory factors (TNF-α, IL-6, MCP1) and profibrotic factors (NF-κB activation, Collagen I), elevated expression of NADPH oxidation-related subunits (P65), and activation of the TGF-ß1/Smad3 signaling pathway. Tempol treatment inhibited NF-κB-mediated inflammation and TGF-ß1/Smad3-induced renal fibrosis signaling pathway activation. CONCLUSION: These findings suggest that Tempol may hold therapeutic potential for preventing and treating rats undergoing 5/6 nephrectomy. Further research is warranted to elucidate the mechanisms underlying Tempol's protective effects and its potential clinical applications. Besides, there is a discernible positive relationship between oxidized albumin and other biomarkers, such as 8-OHG, urinary protein levels, mALB, Scr, BUN, and TGF-ß1 in a High-salt diet combined with 5/6 nephrectomy rat model. These findings suggest the potential utility of oxidized albumin as a sensitive indicator for oxidative stress assessment.


Assuntos
Óxidos N-Cíclicos , Insuficiência Renal Crônica , Marcadores de Spin , Fator de Crescimento Transformador beta1 , Animais , Ratos , Albuminas/química , Albuminas/metabolismo , Peso Corporal , Colágeno/metabolismo , Creatinina , Dieta , Fibrose , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Nefrectomia , NF-kappa B/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/tratamento farmacológico , Cloreto de Sódio/efeitos adversos , Cloreto de Sódio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Biomarcadores , Sódio na Dieta/efeitos adversos
4.
J Cell Mol Med ; 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33611845

RESUMO

In this study, we investigated how Roux-en-Y gastric bypass (RYGB) enhances glucagon-like peptide 1 (GLP-1) response in GK rats and explored the potential link between RYGB-stimulated BAs/FXR signalling and GLP-1R-linked signalling in ß-cells, a key pathway that regulates glucose-stimulated insulin secretion (GSIS). Here we show that RYGB restores GLP-1R expression in GK rat islets. This involves increased total BAs as well as chenodeoxycholic acid (CDCA), leading to FXR activation, increasing FXR binding to the promoter of Glp-1r and enhancing occupancy of histone acetyltransferase steroid receptor coactivator-1 (SRC1), thus increasing histone H3 acetylation at the promoter. These coordinated events bring about increased GLP-1R expression, resulting in greater GLP-1 response in ß-cells. Moreover, ablation of FXR suppressed the stimulatory effects of GLP-1. Thus, this study unravels the crucial role of the BAs/FXR/SRC1 axis-controlled GLP-1R expression in ß-cells, which results in enhanced incretin effect and normalized blood glucose of GK rats after RYGB.

5.
Molecules ; 26(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885684

RESUMO

The selective elimination of long-lived radioactive actinides from complicated solutions is crucial for pollution management of the environment. Knowledge about the species, structures and interaction mechanism of actinides at solid-water interfaces is helpful to understand and to evaluate physicochemical behavior in the natural environment. In this review, we summarize recent works about the sorption and interaction mechanism of actinides (using U, Np, Pu, Cm and Am as representative actinides) on natural clay minerals and man-made nanomaterials. The species and microstructures of actinides on solid particles were investigated by advanced spectroscopy techniques and computational theoretical calculations. The reduction and solidification of actinides on solid particles is the most effective way to immobilize actinides in the natural environment. The contents of this review may be helpful in evaluating the migration of actinides in near-field nuclear waste repositories and the mobilization properties of radionuclides in the environment.

6.
Biotechnol Appl Biochem ; 67(2): 249-256, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31628682

RESUMO

Raspberry ketone is a primary aroma component of the red raspberry. The glycosylation of this compound is a potential approach used to improve its pharmaceutical properties. In this work, raspberry ketone glycosides are produced in bacteria for the first time. Bacillus licheniformis PI15, an organic solvent-tolerant glycosyltransferase-producing strain, was isolated from chemically polluted soil. The cloning and heterologous expression of a glycosyltransferase, which was designated PI-GT1, in Escherichia coli BL21 resulted in the expression of an active and soluble protein that accounted for 15% of the total cell protein content. Purified PI-GT1 was highly active and stable over a broad pH range (6.0-10.0) and showed excellent pH stability. PI-GT1 maintained almost 60% of its maximal activity after 3 H of incubation at 20-40 °C and demonstrated optimal activity at 30 °C. Additionally, PI-GT1 displayed high stability and activity in the presence of hydrophilic solvents with log P ≤ -0.2 and retained more than 80% of its activity after 3 H of treatment. Supplementation with 10% DMSO markedly improved the glycosylation of raspberry ketone, resulting in a value 26 times higher than that in aqueous solution. The organic solvent-tolerant PI-GT1 may have potential uses in industrial chemical and pharmaceutical synthesis applications.


Assuntos
Bacillus licheniformis/enzimologia , Butanonas/metabolismo , Dimetil Sulfóxido/metabolismo , Glicosídeos/biossíntese , Glicosiltransferases/metabolismo , Butanonas/química , Dimetil Sulfóxido/química , Glicosídeos/química , Glicosilação , Concentração de Íons de Hidrogênio , Solventes/química , Solventes/metabolismo
7.
Neuroimage ; 135: 186-96, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27132044

RESUMO

Humans exhibit substantial inter-individual differences in pain perception, which contributes to variability in analgesic efficacy. Individual differences in pain sensitivity have been linked with variation in the serotonin transporter gene (5-HTTLPR), and selective serotonin reuptake inhibitors (SSRIs) such as citalopram have been increasingly used as treatments for multiple pain conditions. We combined genotyping, pharmacological challenge, and neuroimaging during painful electrical stimulation to reveal how serotonin genetics and pharmacology interact to influence pain perception and its underlying neurobiological mechanisms. In a double-blind, placebo-controlled procedure, we acutely administrated citalopram (30mgpo) to short/short (s/s) and long/long (l/l) healthy male 5-HTTLPR homozygotes during functional MRI with painful and non-painful electrical stimulation. 5-HTTLPR genotype modulated citalopram effects on pain-related brain responses in the thalamus, cerebellum, anterior insula, midcingulate cortex and inferior frontal cortex. Specifically, citalopram significantly reduced pain-related brain responses in l/l but not in s/s homozygotes. Moreover, the interaction between 5-HTTLPR genotype and pain-related brain activity was a good predictor of the citalopram-induced reductions in pain reports. The genetic modulations of citalopram effects on brain-wide pain processing were paralleled by significant effects on the Neurological Pain Signature, a multivariate brain pattern validated to be sensitive and specific to physical pain. This work provides neurobiological mechanism by which genetic variation shapes brain responses to pain perception and treatment efficacy. These findings have important implications for the types of individuals for whom serotonergic treatments provide effective pain relief, which is critical for advancing personalized pain treatment.


Assuntos
Citalopram/administração & dosagem , Percepção da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Analgésicos/administração & dosagem , Método Duplo-Cego , Feminino , Humanos , Masculino , Medição da Dor/efeitos dos fármacos , Testes Farmacogenômicos/métodos , Efeito Placebo , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Resultado do Tratamento , Adulto Jovem
8.
Neuroimage ; 110: 22-31, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25637390

RESUMO

The human brain responds more strongly to racial ingroup than outgroup individuals' pain. This racial ingroup bias varies across individuals and has been attributed to social experiences. What remains unknown is whether the racial ingroup bias in brain activity is associated with a genetic polymorphism. We investigated genetic associations of racial ingroup bias in the brain activity to racial ingroup and outgroup faces that received painful or non-painful stimulations by scanning A/A and G/G homozygous of the oxytocin receptor gene polymorphism (OXTR rs53576) using functional MRI. We found that G/G compared to A/A individuals showed stronger activity in the anterior cingulate and supplementary motor area (ACC/SMA) in response to racial ingroup members' pain, whereas A/A relative to G/G individuals exhibited greater activity in the nucleus accumbens (NAcc) in response to racial outgroup members' pain. Moreover, the racial ingroup bias in ACC/SMA activity positively predicted participants' racial ingroup bias in implicit attitudes and NAcc activity to racial outgroup individuals' pain negatively predicted participants' motivations to reduce racial outgroup members' pain. Our results suggest that the two variants of OXTR rs53576 are associated with racial ingroup bias in brain activities that are linked to implicit attitude and altruistic motivation, respectively.


Assuntos
Encéfalo/fisiologia , Empatia/fisiologia , Racismo/psicologia , Receptores de Ocitocina/genética , Povo Asiático , Feminino , Genótipo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Núcleo Accumbens/metabolismo , Dor/psicologia , Estimulação Luminosa , População Branca , Adulto Jovem
9.
Br J Psychiatry ; 206(5): 385-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25745133

RESUMO

BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs), such as citalopram, which selectively block serotonin transporter (5-HTT) activity, are widely used in the treatment of depression and anxiety disorders. Numerous neuroimaging studies have examined the effects of SSRIs on emotional processes. However, there are considerable inter-individual differences in SSRI effect, and a recent meta-analysis further revealed discrepant effects of acute SSRI administration on neural responses to negative emotions in healthy adults. AIMS: We examined how a variant of the serotonin-transporter polymorphism (5-HTTLPR), which affects the expression and function of 5-HTT, influenced the acute effects of an SSRI (citalopram) on emotion-related brain activity in healthy adults. METHOD: Combining genetic neuroimaging, pharmacological technique and a psychological paradigm of emotion recognition, we scanned the short/short (s/s) and long/long (l/l) variants of 5-HTTLPR during perception of fearful, happy and neutral facial expressions after the acute administration of an SSRI (i.e. 30 mg citalopram administered orally) or placebo administration. RESULTS: We found that 5-HTTLPR modulated the acute effects of citalopram on neural responses to negative emotions. Specifically, relative to placebo, citalopram increased amygdala and insula activity in l/l but not s/s homozygotes during perception of fearful faces. Similar analyses of brain activity in response to happy faces did not show any significant effects. CONCLUSIONS: Our combined pharmacogenetic and functional imaging results provide a neurogenetic mechanism for discrepant acute effects of SSRIs.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Citalopram/administração & dosagem , Emoções/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adolescente , Alelos , Expressão Facial , Medo/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
10.
Cereb Cortex ; 24(9): 2421-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23588187

RESUMO

Cognitive distortion in depression is characterized by enhanced negative thoughts about both environment and oneself. Carriers of a risk allele for depression, that is, the short (s) allele of the serotonin transporter promoter polymorphism (5-HTTLPR), exhibit amygdala hyperresponsiveness to negative environmental stimuli relative to homozygous long variant (l/l). However, the neural correlates of negative self-schema in s allele carriers remain unknown. Using functional MRI, we scanned individuals with s/s or l/l genotype of the 5-HTTLPR during reflection on their own personality traits or a friend's personality traits. We found that relative to l/l carriers, s/s carriers showed stronger distressed feelings and greater activity in the dorsal anterior cingulate (dACC)/dorsal medial prefrontal cortex (dmPFC) and the right anterior insula (AI) during negative self-reflection. The 5-HTTLPR effect on the distressed feelings was mediated by the AI/inferior frontal (IF) activity during negative self-reflection. The dACC/dmPFC activity explained 20% of the variation in harm-avoidance tendency in s/s but not l/l carriers. The genotype effects on distress and brain activity were not observed during reflection on a friend's negative traits. Our findings reveal that 5-HTTLPR polymorphism modulates distressed feelings and brain activities associated with negative self-schema and suggest a potential neurogenetic susceptibility mechanism for depression.


Assuntos
Encéfalo/fisiologia , Polimorfismo Genético , Autoimagem , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Mapeamento Encefálico , Feminino , Amigos , Técnicas de Genotipagem , Humanos , Julgamento/fisiologia , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Testes Neuropsicológicos , Oxigênio/sangue , Personalidade , Adulto Jovem
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167136, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531483

RESUMO

Farnesoid X receptor (FXR) improves the function of islets, especially in the setting of Roux-en-Y gastric bypass (RYGB). Here we investigated how FXR activation regulates ß-cell proliferation and explored the potential link between FXR signaling and the menin pathway in controlling E2F3 expression, a key transcription factor for controlling adult ß-cell proliferation. Stimulation with the FXR agonist GW4064 or chenodeoxycholic acid (CDCA) increased E2F3 expression and ß-cell proliferation. Consistently, E2F3 knockdown abolished GW4064-induced proliferation. Treatment with GW4064 increased E2F3 expression in ß-cells via enhancing Steroid receptor coactivator-1 (SRC1) recruitment, increasing the pro-transcriptional acetylation of histone H3 at the E2f3 promoter. GW4064 treatment also decreased the association between FXR and menin, leading to the induction of FXR-mediated SRC1 recruitment. Mimicking the impact of FXR agonists, RYGB also increased E2F3 expression and ß-cell proliferation in GK rats and SD rats. These findings unravel the crucial role of the FXR/menin signaling in epigenetically controlling E2F3 expression and ß-cell proliferation, a mechanism possibly underlying RYGB-induced ß-cell proliferation.


Assuntos
Proliferação de Células , Fator de Transcrição E2F3 , Epigênese Genética , Células Secretoras de Insulina , Receptores Citoplasmáticos e Nucleares , Animais , Ratos , Proliferação de Células/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Fator de Transcrição E2F3/metabolismo , Fator de Transcrição E2F3/genética , Ratos Wistar , Histonas/metabolismo , Isoxazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia
12.
Bioresour Technol ; 406: 131002, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38889869

RESUMO

A continuous chemical-free green approach was investigated for the comprehensive reutilization of all components in herbal extraction residues (HERs), taking Glycyrrhiza uralensis residue (GUR) as an example. The GUR structural changes induced by mechanical extrusion which improve the specific surface area and enzyme accessibility of GUR. With 3 % pretreated GUR loading of high-tolerance Penicillium oxalicum G2. The reducing sugar yield of 11.45 g/L was achieved, along with an 81.06 % in situ enzymatic hydrolysis. Finally, 8.23 g/L bioethanol (0.40 g/g total sugar) was produced from GUR hydrolysates after 24 h fermentation of Pichia stipitis G32. The amount of functional medicinal ingredients extracted from GUR after hydrolysis (39.63 mg/g) was 37.69 % greater than that of un-pretreated GUR. In total, 1.49 g flavonoids, 294.36 U cellulase, and 14.13 g ethanol could be produced from 100 g GUR using this process, illustrating that this green and efficient process has the potential for industrial production.

13.
ACS Appl Mater Interfaces ; 14(26): 30192-30204, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731779

RESUMO

A self-healing coating possesses a broad application prospect in the metal corrosion protection area due to its pleasurable performance. By far, despite a great deal of research studies that have been reported in this field, it is still a challenge to construct an intrinsic self-healing surface that can repair a damaged structure and restore superhydrophobicity simultaneously. Herein, a self-healing superhydrophobic coating was fabricated by combining polydopamine (PDA)-functionalized Cu2+-doped graphene oxide (GO), octadecylamine (ODA), and polydimethylsiloxane (PDMS), which can recover the superhydrophobicity and microstructure of the coating after chemical/physical damage. The as-prepared self-healing coating displayed excellent liquid repellency with a water contact angle of 158.2 ± 2° and a sliding angle of 4 ± 1°, which endowed the Mg alloy with excellent anticorrosion performance. Once the coating is scratched, the local damaged structure will be automatically repaired through the chelation of catechol and Cu2+. Also, the superhydrophobicity of the coating can be rapidly restored under 1-sun irradiation even after being etched by O2 plasma. Furthermore, the as-fabricated self-healing coating still exhibited excellent corrosion protection against a magnesium alloy after immersion in 3.5 wt % NaCl solution for 30 days, which was attributed to the efficient repair of defects in GO by PDA through π-π interactions and the inherent chemical inertia of PDMS. Moreover, the as-fabricated self-healing coating also exhibited favorable mechanical stability, chemical durability, and weather resistance. This study paves a fresh insight into the design of robust self-healing coatings with huge application potential.

14.
Nanomaterials (Basel) ; 12(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35564151

RESUMO

With the fast development of industry and nuclear energy, large amounts of different radionuclides are inevitably released into the environment. The efficient solidification or elimination of radionuclides is thereby crucial to environmental pollution and human health because of the radioactive hazardous of long-lived radionuclides. The properties of negatively or positively charged radionuclides are quite different, which informs the difficulty of simultaneous elimination of the radionuclides. Herein, we summarized recent works about the selective sorption or catalytic reduction of target radionuclides using different kinds of nanomaterials, such as carbon-based nanomaterials, metal-organic frameworks, and covalent organic frameworks, and their interaction mechanisms are discussed in detail on the basis of batch sorption results, spectroscopy analysis and computational calculations. The sorption-photocatalytic/electrocatalytic reduction of radionuclides from high valent to low valent is an efficient strategy for in situ solidification/immobilization of radionuclides. The special functional groups for the high complexation of target radionuclides and the controlled structures of nanomaterials can selectively bind radionuclides from complicated systems. The challenges and future perspective are finally described, summarized, and discussed.

15.
Am J Transl Res ; 14(11): 8279-8285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505329

RESUMO

INTRODUCTION: Gastrointestinal stromal tumors (GISTs) rarely occur in the duodenum, and only a few cases have been reported. Its clinical manifestations are not specific, and the imaging examination results are not typical, so a preoperative diagnosis is difficult. Pathologic examinations and genetic testing after surgical resection are the main diagnostic methods. Here, a case of duodenal stromal tumor complicated by gastrointestinal perforation is reported. A 57-year-old man presented with paroxysmal abdominal pain and bloating for 7 days. Contrast-enhanced computed tomography of the abdomen revealed a large mass (10 cm in diameter) in the right upper abdomen, which was considered neoplastic. The mass was anterior and inferior to the head of the pancreas, and medial to the mesenteric vessels. The tumor surrounded the descending and horizontal parts of the duodenum, and it ruptured into the lumen of the descending duodenum. After the patient underwent tumor resection, we found a rupture of the descending duodenal opening. After that, duodenal fistula drainage, gastrostomy, jejunostomy, small intestinal adhesion release and abdominal irrigation drainage were performed. Immunohistochemical staining results were as follows: CD34 (-), desmin (-), S-100 (-), CD117 (9.7) (+), DoG-1 (+), SDHB (+), Ki-67 (+5%). Based on these results, the lesion was finally diagnosed as duodenal GIST. The patient underwent surgical resection without targeted therapy and recovered well. DISCUSSION: Duodenal stromal tumors often present with gastrointestinal bleeding and other clinical symptoms, requiring urgent surgery. Complete resection of the tumor is an effective surgical method. Extended resection does not prolong survival. However, surgical treatment should be determined according to the size and location of the tumor and its relationship to the pancreas. This highly malignant duodenal stromal tumor was >10 cm, accompanied by gastrointestinal perforation and necrosis. Surgical resection was required while protecting the organ function.

16.
Microb Biotechnol ; 15(9): 2401-2410, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35730125

RESUMO

The natural flavonoids luteolin and luteoloside have anti-bacterial, anti-inflammatory, anti-oxidant, anti-tumour, hypolipidemic, cholesterol lowering and neuroprotective effects, but their poor water solubility limits their application in industrial production and the pharmaceutical industry. In this study, luteolin-7-O-ß-(6″-O-succinyl)-d-glucoside, a new compound that was prepared by succinyl glycosylation of luteolin by the organic solvent tolerant bacterium Bacillus amyloliquefaciens FJ18 in an 8.0% DMSO (v/v) system, was obtained and identified. Its greater water solubility (2293 times that of luteolin and 12 232 times that of luteoloside) provides the solution to the application problems of luteolin and luteoloside. The conversion rate of luteolin (1.0 g l-1 ) was almost 100% at 24 h, while the yield of luteolin-7-O-ß-(6″-O-succinyl)-d-glucoside reached 76.2%. In experiments involving the oxygen glucose deprivation/reoxygenation injury model of mouse hippocampal neuron cells, the cell viability was significantly improved with luteolin-7-O-ß-(6″-O-succinyl)-d-glucoside dosing, and the expressions of the anti-oxidant enzyme HO-1 in the nucleus increased, providing a neuroprotective effect for ischemic cerebral cells. The availability of biosynthetic luteolin-7-O-ß-(6″-O-succinyl)-d-glucoside, which is expected to replace luteolin and luteoloside, would effectively expand the clinical application value of luteolin derivatives.


Assuntos
Luteolina , Fármacos Neuroprotetores , Animais , Anti-Inflamatórios , Antioxidantes , Glucosídeos , Luteolina/farmacologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Solubilidade , Água
17.
J Hazard Mater ; 426: 127838, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34844805

RESUMO

Crystallization and immobilization of actinides to form actinide compounds are of significant importance for the extraction and reutilization of nuclear waste in the nuclear industry. In this paper, the state-of-art progress in the crystallization of actinides are summarized, as well as the main functionalization of the actinide compounds, i.e., as adsorbents for heavy metal ions and organic pollutant in waste management, as (photo)catalysts for organic degradation and conversion, including degradation of organic dyes and antibiotics, dehydrogenation of N-heterocycles, CO2 cycloaddition, selective alcohol oxidation and selective oxidation of sulfides. This review will give a comprehensive summary about the synthesis and application exploration of solid actinide crystalline salts and actinide-based metal organic frameworks in the past decades. Finally, the future perspectives and challenges are proposed in the end to give a promising direction for future investigation.


Assuntos
Elementos da Série Actinoide , Estruturas Metalorgânicas , Resíduos Radioativos , Elementos da Série Actinoide/análise , Cristalização , Metais , Resíduos Radioativos/análise
18.
Oncogene ; 41(36): 4185-4199, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35882980

RESUMO

HFE (Hemochromatosis) is a conventional iron level regulator and its loss of function due to gene mutations increases the risk of cancers including hepatocellular carcinoma (HCC). Likewise, studies focusing on HFE overexpression in cancers are all limited to linking up these events as a consequence of iron level deregulation. No study has explored any iron unrelated role of HFE in cancers. Here, we first reported HFE as an oncogene in HCC and its undescribed function on promoting abscission in cytokinesis during mitotic cell division, independent of its iron-regulating ability. Clinical analyses revealed HFE upregulation in tumors linking to large tumor size and poor prognosis. Functionally and mechanistically, HFE promoted cytokinetic abscission via facilitating ESCRT abscission machinery recruitment to the abscission site through signaling a novel HFE/ALK3/Smads/LIF/Hippo/YAP/YY1/KIF13A axis. Pharmacological blockage of HFE signaling axis impeded tumor phenotypes in vitro and in vivo. Our data on HFE-driven HCC unveiled a new mechanism utilized by cancer cells to propel rapid cell division. This study also laid the groundwork for tumor intolerable therapeutics development given the high cytokinetic dependency of cancer cells and their vulnerability to cytokinetic blockage.


Assuntos
Carcinoma Hepatocelular , Hemocromatose , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Divisão Celular , Citocinese/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteína da Hemocromatose/genética , Humanos , Ferro , Cinesinas , Neoplasias Hepáticas/genética
19.
Front Chem ; 9: 635191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33634077

RESUMO

Upgrading of biomass derived 5-hydroxymethylfurfural (HMF) has attracted considerable interest recently. A new highly HMF-tolerant strain of Burkholderia contaminans NJPI-15 was isolated in this study, and the biocatalytic reduction of HMF into 2,5-bis(hydroxymethyl)furan (BHMF) using whole cells was reported. Co-substrate was applied to improve the BHMF yield and selectivity of this strain as well as HMF-tolerant level. The catalytic capacity of the cells can be substantially improved by Mn2+ ion. The strain exhibited good catalytic performance at a pH range of 6.0-9.0 and a temperature range of 25°C-35°C. In addition, 100 mM HMF could be reduced to BHMF by the B. contaminans NJPI-15 resting cells in presence of 70 mM glutamine and 30 mM sucrose, with a yield of 95%. In the fed-batch strategy, 656 mM BHMF was obtained within 48 h, giving a yield of 93.7%. The reported utilization of HMF to produce BHMF is a promising industrially sound biocatalytic process.

20.
3 Biotech ; 11(7): 314, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34109099

RESUMO

Glycosylation is a prominent biological mechanism, affecting the structural and functional diversity of many natural products. In this study, a novel thermostable uridine diphosphate-dependent glycosyltransferase gene PpGT1 was cloned from Paenibacillus polymyxa NJPI29 and recombinantly expressed in B. subtilis WB600. The purified PpGT1 had a molecular weight of 45 kDa, as estimated using SDS-PAGE. The PpGT1 could catalyze the glycosylation of vanillic acid, methyl vanillate, caffeic acid, cinnamic alcohol, and ferulic acid. Moreover, PpGT1 possessed good thermostability and retained 80% of its original activity even after 12 h of incubation at 45 °C. In addition, PpGT1 remained stable within a neutral to alkaline pH range as well as in the presence of metal ions. The synthesis of methyl vanillate 4-O-ß-D-glucoside by purified PpGT1 reached a yield 3.58 mM in a system with pH 8.0, 45 °C, 12 mM UDP-Glc, and 4 mM methyl vanillate. 3D-structure-based amino acid sequence alignments revealed that the catalytic residues and C-terminated PSPG motif were conserved. These unusual properties indicated that PpGT1 is a candidate UGT for valuable natural product industrial applications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02855-z.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA