Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793208

RESUMO

A top-down design methodology and implementation of a time domain sensor is presented in this paper. The acceleration resolution of the time domain sensor is equal to the time-measurement accuracy divided by the sensor sensitivity. Combined with the sensitivity formula, the acceleration resolution is proportional to the vibration amplitude, the time-measurement accuracy, and the third power of the resonant frequency. According to the available time-measurement accuracy and the desired acceleration resolution, the parameters including the vibration amplitude and the resonant frequency were theoretically calculated. The geometrical configuration of the time domain sensor device was designed based on the calculated parameters. Then, the designed device was fabricated based on a standard silicon-on-insulator process and a matched interface circuit was developed for the fabricated device. Experimental results demonstrated that the design methodology is effective and feasible. Moreover, the implemented sensor works well. In addition, the acceleration resolution can be tuned by adjusting the time-measurement accuracy and the vibration amplitude. All the reported results of this work can be expanded to other time domain inertial sensors, e.g., a gyroscope or tilt sensor.

2.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38398955

RESUMO

This paper characterizes the sensitivity of a time domain MEMS accelerometer. The sensitivity is defined by the increment in the measured time interval per gravitational acceleration. Two sensitivities exist, and they can be enhanced by decreasing the amplitude and frequency. The sensitivity with minor nonlinearity is chosen to evaluate the time domain sensor. The experimental results of the developed accelerometer demonstrate that the sensitivities span from -68.91 µs/g to -124.96 µs/g and the 1σ noises span from 8.59 mg to 6.2 mg (amplitude of 626 nm: -68.91 µs/g and 10.21 mg; amplitude of 455 nm: -94.51 µs/g and 7.76 mg; amplitude of 342 nm: -124.96 µs/g and 6.23 mg), which indicates the bigger the amplitude, the smaller the sensitivity and the bigger the 1σ noise. The adjustable sensitivity provides a theoretical foundation for range self-adaption, and all the results can be extended to other time domain inertial sensors, e.g., a gyroscope or an inclinometer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA