Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684323

RESUMO

C-type starches with different proportions of A- and B-type crystallinities have different intensities and crystallinities of X-ray diffraction peaks. In this study, the intensities and crystallinities of X-ray diffraction peaks, molecular components and heat properties of C-type starches were investigated in seven sweet potato varieties, and their relationships were analyzed. The intensity and crystallinity of a diffraction peak at 5.6° were significantly positively correlated to the DP6-12 branch-chains of amylopectin and significantly negatively correlated to the true amylose content (TAC) determined by concanavalin A precipitation, gelatinization temperature, gelatinization enthalpy, water solubility at 95 °C, and pasting temperature. The intensity of diffraction peaks at 15° and 23° were significantly positively correlated to the gelatinization temperature and pasting temperature and significantly negatively correlated to the pasting peak viscosity. The significantly positive relationships were detected between the crystallinity of a diffraction peak at 15° and the DP13-24 branch-chains of amylopectin, gelatinization conclusion temperature and water solubility, between the crystallinity of diffraction peak at 17-18° and the TAC, gelatinization onset temperature, water solubility and pasting temperature, between the crystallinity of a diffraction peak at 23° and the gelatinization conclusion temperature and pasting peak time, and between the total crystallinity and the TAC, gelatinization conclusion temperature, water solubility and pasting temperature. The score plot of principle component analysis showed that the molecular components and heat property parameters could differentiate the C-type starches and agreed with their characteristics of X-ray diffraction peaks. This study provides some references for the utilizations of C-type starches.


Assuntos
Ipomoea batatas , Amilopectina , Amilose , Temperatura Alta , Amido , Temperatura , Água , Difração de Raios X
2.
J Sci Food Agric ; 102(15): 7363-7369, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35780331

RESUMO

BACKGROUND: Baked products such as biscuits and breads are the staple foods for a large population, with the starch digestion rate having a crucial effect on human health. Currently, there is a lack of information on general starch digestibility in commercial baked products and its correlation with macronutrient content. RESULTS: The present study investigated the starch digestibility of 35 commercial baked products, ranging from low to high moisture contents. Biscuits generally had a slower starch digestion rate than mini-breads, whereas breads including whole wheat bread had the fastest digestion rate. Additionally, starch digestibility was negatively correlated with the calorie (R2  = 0.71) and fat content (R2  = 0.56) in per serving size, possibly because of the formation of amylose-lipid complex. CONCLUSION: The present study provides a database for the in vitro starch digestibility of a large number of food items, which gives general indications on the performance of starch components of commercial products in the human gastrointestinal tract. © 2022 Society of Chemical Industry.


Assuntos
Digestão , Amido , Humanos , Amido/química , Manipulação de Alimentos , Pão/análise , Nutrientes
3.
Biomacromolecules ; 20(7): 2821-2829, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31244022

RESUMO

Glycogen, a randomly branched glucose polymer, provides energy storage in organisms. It forms small ß particles which in animals bind to form composite α particles, which give better glucose release. Simulations imply ß particle size is controlled only by activities and sizes of glycogen biosynthetic enzymes and sizes of polymer chains. Thus, storing more glucose requires forming more ß particles, which are expected to sometimes form α particles. No α particles have been reported in bacteria, but the extraction techniques might have caused degradation. Using milder glycogen extraction techniques on Escherichia coli, transmission electron microscopy and size-exclusion chromatography showed α particles, consistent with this hypothesis for α-particle formation. Molecular density and size distributions show similarities with animal glycogen, despite very different metabolic processes. These general polymer constraints are such that any organism which needs to store and then release glucose will have similar α and ß particle structures: a type of convergent evolution.


Assuntos
Escherichia coli/química , Glucose/química , Glicogênio/química , Polímeros/química , Partículas alfa , Partículas beta , Metabolismo Energético/genética , Escherichia coli/ultraestrutura , Glicogênio/ultraestrutura , Microscopia Eletrônica de Transmissão
4.
J Sci Food Agric ; 99(6): 2865-2873, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30460692

RESUMO

BACKGROUND: High temperature during the grain-filling stage is an important factor that can affect grain quality by altering the composition and structure of starch in rice. Therefore, it is important to study the regulatory mechanism of high temperature on rice starch biosynthesis. RESULTS: Two japonica cultivars, the waxy rice Taihunuo and non-waxy Nangeng 5055 were used to examine the effect of high temperature on the fine structure of starch during the grain-filling stage. Analysis of starch chain length distribution indicated that exposure to a high temperature increased the content of starch with medium-long chains and decreased the starch with short chains in both rice varieties. The differences of amylopectin synthesis responding to high temperature between waxy and non-waxy rice can shed light on the interactions of amylose and amylopectin synthesis under high temperature conditions. In the non-waxy variety, the amylose biosynthesis may affect the short and medium-long amylopectin biosynthesis under high temperature. A mathematical fitting model was used to interpret the fine structure of amylopectin and a series of parameters with enzymatical significance (ß and γ) were obtained. The fitting results showed that the waxy and non-waxy rice had similar responses to high temperature. The variations of the parameter response to high temperature was more remarkable in Taihunuo. Activity analysis of starch synthesis-related enzymes during the grain-filling stage demonstrated the reliability of model fitting results. CONCLUSION: The influences of high temperature on the fine structure of starch are similar between waxy and non-waxy rice. Amylose biosynthesis may affect amylopectin biosynthesis under high temperature. © 2018 Society of Chemical Industry.


Assuntos
Oryza/crescimento & desenvolvimento , Amido/química , Modelos Teóricos , Oryza/química , Oryza/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Amido/metabolismo , Temperatura
5.
Food Chem ; 456: 140074, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38876074

RESUMO

Multi-scale structures were investigated to understand starch digestibility of instant rice. A wide range of maximum starch digested ratio, up to about 20%, was observed among instant rice prepared from different rice varieties. Instant rice with a smooth and densely packed cross-section showed slower starch digestibility than those with a porous and loosely packed structure. All samples displayed B + V type crystallinity, with V-type crystallinity negatively correlating with maximum starch digested percentage. After digestion, starch chain-length distributions were significantly altered: rapidly digested starch comprised long amylose and short amylopectin chains, while slowly digested starch comprised chains with a peak degree of polymerization (DP) around 130. These results indicate that instant rice with a compact microstructure, high V-type crystallinity, and DP 130 fractions during digestion can reduce starch digestibility. This study provides insights for food industry to develop instant rice products with slow starch digestibility, potentially improving human health.

6.
Carbohydr Polym ; 337: 122190, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710564

RESUMO

Starch structure is often characterized by the chain-length distribution (CLD) of the linear molecules formed by breaking each branch-point. More information can be obtained by expanding into a second dimension: in the present case, the total undebranched-molecule size. This enables answers to questions unobtainable by considering only one variable. The questions considered here are: (i) are the events independent which control total size and CLD, and (ii) do ultra-long amylopectin (AP) chains exist (these chains cannot be distinguished from amylose chains using simple size separation). This was applied here to characterize the structures of one normal (RS01) wheat and two high-amylose (AM) mutant wheats (an SBEIIa knockout and an SBEIIa and SBEIIb knockout). Absolute ethanol was used to precipitate collected fractions, then size-exclusion chromatography for total molecular size and for the size of branches. The SBEIIa and SBEIIb mutations significantly increased AM and IC contents and chain length. The 2D plots indicated the presence of small but significant amounts of long-chain amylopectin, and the asymmetry of these plots shows that the corresponding mechanisms share some causal effects. These results could be used to develop plants producing improved starches, because different ranges of the chain-length distribution contribute independently to functional properties.


Assuntos
Amilopectina , Amilose , Sintase do Amido , Triticum , Triticum/metabolismo , Triticum/química , Triticum/genética , Amilopectina/química , Amilopectina/biossíntese , Amilose/química , Amilose/biossíntese , Sintase do Amido/genética , Sintase do Amido/metabolismo , Sintase do Amido/química , Amido/química , Amido/biossíntese , Amido/metabolismo , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Carbohydr Polym ; 330: 121785, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368080

RESUMO

The relationship between the fine structure of starch and its gelatinization properties is not well studied, particularly in relation to the influence of sugar or sugar alcohol. In this study, seven starches with distinct molecular structures were investigated to determine how different sugars and sugar alcohols affect their gelatinization properties. The inclusion of sugars and sugar alcohols resulted in a significant elevation of starch gelatinization temperatures (∼ 8 °C), especially with sucrose, isomaltose and isomalt. Nevertheless, the influence of these sugars/ sugar alcohols on the gelatinization temperature range and enthalpy change varied depending on the particular starch varieties. According to the correlation analysis, sugars and sugar alcohols mainly exert their impact on the starch gelatinization temperature range and enthalpy change by possibly interacting with amylose chains possessing a degree of polymerization ranging from 100 to 1000 (p < 0.05) and inhibiting the amylose leaching during gelatinization. These findings help a better understanding of the complex relationship between starch fine structure and gelatinization properties under the influence of sugars and sugar alcohols.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Estrutura Molecular , Álcoois Açúcares , Açúcares , Amilopectina/química
8.
Int J Biol Macromol ; 270(Pt 2): 132445, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772473

RESUMO

Glycogen is a highly branched glucose polymer that is an energy storage material in fungi and animals. Extraction of glycogen from its source in a way that minimizes its molecular degradation is essential to investigate its native structure. In this study, the following extraction methods were compared: sucrose gradient density ultracentrifugation, thermal alkali, hot alcohol and hot water extractions. Molecular-size and chain-length distributions of glycogen were measured by size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis, respectively. These two fine-structure features are the most likely structural characteristics to be degraded during extraction. The results show that the thermal alkali, hot alcohol and hot water extractions degrade glycogen molecular size and/or chain-length distributions, and that sucrose gradient density ultracentrifugation with neither high temperature nor alkaline treatment is the most suitable method for fungal glycogen extraction.


Assuntos
Glicogênio , Glicogênio/química , Glicogênio/metabolismo , Fungos/química , Peso Molecular , Fracionamento Químico/métodos , Cromatografia em Gel/métodos , Ultracentrifugação/métodos
9.
Foods ; 12(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238894

RESUMO

Zeaxanthin is a natural xanthophyll carotenoid and the main macular pigment that protects the macula from light-initiated oxidative damage, but it has poor stability and low bioavailability. Absorption of this active ingredient into starch granules as a carrier can be used to improve both zeaxanthin stability and controlled release. Optimization using three variables judged important for optimizing the system (reaction temperature of 65 °C, starch concentration of 6%, and reaction time of 2 h) was conducted for incorporation of zeaxanthin into corn starch granules, aiming for high zeaxanthin content (2.47 mg/g) and high encapsulation efficiency (74%). Polarized-light microscopy, X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy showed that the process partially gelatinized corn starch; additionally, it showed the presence of corn starch/zeaxanthin composites, with the zeaxanthin successfully trapped in corn starch granules. The half-life time of zeaxanthin in corn starch/zeaxanthin composites increased to 43 days as compared with that of zeaxanthin alone (13 days). The composites show a rapid increase in zeaxanthin release with in vitro intestinal digestion, which is favorable for possible use in living systems. These findings could have application in designing effective starch-based carriers of this bioactive ingredient with enhanced storage stability and improved intestines-targeted controlled-release delivery.

10.
Carbohydr Polym ; 308: 120648, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813340

RESUMO

Although starch gelatinization and retrogradation properties of wheat flour have been studied with respect to their relations to starch structures, it remains less understood how starch structure and salt (a common food additive) together determine these properties. Gelatinization and retrogradation properties of seven wheat flours with distinct starch structures were thus investigated after adding different salts. NaCl most efficiently increased starch gelatinization temperatures, while KCl showed highest efficiency in retarding the retrogradation degree. Both gelatinization and retrogradation parameters were significantly affected by amylose structural parameters and types of salts. E.g., wheat flours with longer amylose long chains had more heterogeneous amylopectin double helices during gelatinization, while this relationship disappeared after adding NaCl. More amylose short chains increased the heterogeneity of retrograded short-range starch double helices, while the relationship was opposite after adding NaCl. These results help a better understanding of the complex relationship between starch structure and physicochemical property.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Farinha , Sais , Cloreto de Sódio , Triticum/química , Amilopectina/química
11.
Food Chem X ; 20: 100949, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144746

RESUMO

Buckwheat is considered as a healthy cereal food, and it is essential to cultivate new buckwheat lines with good starch physicochemical properties for both consumers and food producers. Six novel buckwheat (Duoku, Dk) were generated by crossing of Golden buckwheat and Tatary buckwheat, and their kernel appearance properties and starch physicochemical properties were analyzed together with one domestic line (Cimiqiao) and one wild line (Yeku). The results showed that Dk samples had better appearance properties than two control samples. The Dk samples showed lower amylose content, similar amylopectin molecular structure and chain length distributions, and larger starch granules compared with Cimiqiao. The digestion results showed that two Dk samples: Dk6 & Dk9 had high resistant starch content; while the other two Dk samples: Dk37 & Dk38 had a steady glucose releasing rate. The Dk samples also showed high gelatinization temperature, indicating they were good raw materials for producing glass noodle. This study proved that Dk buckwheat had unique starch physicochemical properties, and could be used as new food materials in the future.

12.
Int J Biol Macromol ; 236: 123906, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870653

RESUMO

Crosslinked corn bran arabinoxylan (CLAX) is a food hydrocolloid that can be applied to improve the physicochemical and digestion properties of starch. However, the impact of CLAX with different gelling characteristics on starch properties remains elusive. Here, high cross-linked arabinoxylan (H-CLAX), moderate crosslinked arabinoxylan (M-CLAX), and low crosslinked arabinoxylan (L-CLAX) were fabricated to investigate their effects on the pasting, rheological, structural, and in vitro digestion property of corn starch (CS). The results showed that H-CLAX, M-CLAX, and L-CLAX differently increased the pasting viscosity and gel elasticity of CS, with H-CLAX exhibiting the greatest effect. The structural characterization of CS-CLAX mixtures showed that H-CLAX, M-CLAX, and L-CLAX differently enhanced the swelling power of CS and increased the hydrogen bonds between CS and CLAX. Furthermore, the addition of CLAX (especially H-CLAX) significantly reduced both the digestion rate and extent of CS, probably due to the increased viscosity and the formation of the amylose-polyphenol complex. This study provided new insights into the interaction between CS and CLAX, and could help to develop healthier foods with slow starch digestibility.


Assuntos
Amido , Zea mays , Amido/química , Zea mays/química , Amilose/química , Viscosidade , Géis/química , Digestão
13.
Int J Biol Macromol ; 201: 458-467, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063484

RESUMO

Though the retrogradation property as affected by starch fine molecular structures has been widely investigated, it remains largely unexplored how concurrent starch structures and storage conditions e.g. temperature tailor the starch retrogradation property. The amylopectin long-term retrogradation for 8 different rice starches with a broad range of amylose content was thus investigated under different storage temperatures. Results showed that gelatinized starch stored at -20 °C generally had a narrower melting temperature range from differential scanning calorimetry, while larger cells and thicker cell walls in the gel matrix than that stored at 4 °C. Different linear correlations were found between starch fine molecular structures and amylopectin retrogradation parameters when starch was stored under different temperatures. For example, the melting enthalpy of retrograded starch double helices was negatively correlated with the amount of amylose intermediate chains at 4 °C, while positively correlated with the relative length of amylopectin short chains at -20 °C. Under both temperatures, rice starch R250 had the highest retrogradation enthalpy. These results could help the rice industry improve both the nutritional and textural attributes of cooked rice by selecting starch with desirable molecular structures and optimizing the storage conditions for rice after cooking.


Assuntos
Amilopectina , Oryza , Amilopectina/química , Amilose/química , Estrutura Molecular , Oryza/química , Amido/química , Temperatura
14.
Carbohydr Polym ; 278: 118955, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973771

RESUMO

Although gelatinization property has been intensively investigated with its relation to starch structures, how a combination of starch molecular structures and moisture content affect the gelatinization remains unclear. The gelatinization of six rice starches with a wide range of amylose content was investigated under different moisture content in this study. Results showed that starch gelatinization temperatures increased and biphasic endothermic peaks appeared over the decreased moisture content. For the first time, amylose content was shown to have a parabolic relationship with gelatinization temperatures. Distinct linear relations among starch fine molecular structures with gelatinization parameters were observed under different moisture contents, which suggested that amylose short chains were involved in the first endothermic peak, while interactions among amylose intermediate chains and relatively shorter amylopectin trans-lamellar chains dominantly contributed to the second endothermic peak when gelatinized under limited moisture content. These results help in better understanding of starch structure-gelatinization relation.

15.
Foods ; 11(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35627085

RESUMO

Retrogradation of cooked rice happens in two ways: one is by the formation of ordered structures, and the other is through intra- and inter-chain entanglement and inter-chain overlap, which in turn are affected by the amylose chain-length distribution. Both entanglement and overlap could affect rice texture. Here, four amylose samples were isolated from starch by precipitation from a dimethyl sulfoxide solution with butan-1-ol and isoamyl alcohol. Following enzymatic debranching, they were then characterized using size-exclusion chromatography. Amylose solutions (10%, m/v) were made by dissolving amylose in 90% (v/v) DMSO. Amylose gels (10%, w/v) were made by dissolving amylose powders into hot water, followed by cooling. The rigidity of the amylose gels and the structural order were measured using a texture analyzer and X-ray diffractometer, respectively. In the amylose solution, for a given mass of polymer in a fixed amount of solvent, the total occupied volume was reduced when the polymer molecular weight was smaller, resulting in less inter-chain overlap and a lower viscosity of the amylose solution. The overall mobility and diffusion of the molecules were inversely related to the square of the molecular weight until the gelation concentration. Thus, amylose gels in which amylose had a lower molecular weight had a greater chance to permeate into other molecules, which counterintuitively led to more inter-chain entanglement and more rigid amylose gels during retrogradation. This information could help rice breeders improve rice quality by using the molecular structure of starch as a guide.

16.
Foods ; 11(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36429329

RESUMO

Texture and aroma are two important attributes for the eating quality of cooked rice, but their mutual relations are not clear. Cooked rice with a desirable texture might suffer from a deteriorated aroma property. To better understand the relations between texture and aroma, six different rice varieties with desirable eating qualities have been selected, with their texture and aroma profile characterized by a texture analyzer and gas chromatography-ion mobility spectrometry, respectively. A large variance of textural attributes and a total number of 39 major volatile organic components were observed for these cooked rice varieties. Pearson correlation showed that the hardness of cooked rice was positively correlated with the content of E-2-hexenal, 2-hexanol-monomer, 1-propanol, and E-2-pentenal, while stickiness was positively correlated with 5-methyl-2-furanmethanol and dimethyl trisulfide. Possible underneath mechanisms were discussed for these relations. These results could help the rice industry to develop rice products with both desirable texture and aroma property.

17.
Int J Biol Macromol ; 215: 192-202, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35728634

RESUMO

Although the starch digestibility of cooked white rice has been investigated with regard to its relation to starch structure, it is not yet clear how starch molecular structure and water content affect its digestion rate. To investigate this, the in vitro starch digestibility and molecular structure of 10 rice varieties with a range of rice-to-water cooking ratios were investigated. As expected, starch digestibility varied with different conditions. Typically, a higher amylose content resulted in a lower maximum digestion extent for a given water content. Having relatively more and longer amylopectin intermediate chains caused a slower starch digestion rate, but only with rice-to-water ratios between 1:1 and 1:1.2. These results could prove useful to find combinations of starch fine molecular structures and water contents to produce cooked rice with low glycemic index.


Assuntos
Oryza , Amido , Amilose/química , Culinária , Digestão , Estrutura Molecular , Oryza/química , Amido/química , Água/química
18.
Carbohydr Polym ; 298: 120136, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241302

RESUMO

Sweet potato was planted at three soil and air temperatures (21, 25 and 28 °C) with the same humidity and light time/intensity. Root tuber starches were isolated, and their multi-scale structures were investigated to reveal the effects of growth temperature on starch properties. Growth temperature did not change the morphology and amylose content of starch, but markedly increased the size of starch from volume-weighted mean diameter 12.2 µm to 17.0 µm. Starch grown at high growth temperature exhibited less A branch-chains and lower branching degree of amylopectin and more B2 and B3+ branch-chains of amylopectin than at low growth temperature. With increasing growth temperature, starch changed from CC-type to CA-type, its relative crystallinity and lamellar peak intensity increased, and the thickness of crystalline and amorphous lamellae did not significantly change. Starch grown at high growth temperature exhibited significantly higher gelatinization temperature than at low growth temperature, but had similar gelatinization enthalpy.


Assuntos
Ipomoea batatas , Amido , Amilopectina/química , Amilose/química , Ipomoea batatas/química , Solo , Amido/química , Temperatura
19.
Carbohydr Polym ; 296: 119959, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088001

RESUMO

The role of amylose content in electrospinning starch nanofibres is well understood, but that is not the case for the roles of the molecular structures of amylose and amylopectin. Here, correlations between starch molecular-structure parameters and electrospinnability evaluation indices (average droplet number, average bead number, and average fibre diameter) and dope properties (shear viscosity, conductivity, and surface tension) were examined. Starches with lower amounts of short amylopectin chains, higher amounts of either/or long amylopectin chains and/or lower degree of branching showed decreased viscosity of the electrospinning dopes, and resulted in a reduced average droplet number of electrospun fibre mats. The molecular sizes of amylose and whole starch, and the average degree of polymerization for amylose chains, all correlated with the shear viscosity and surface tension of dopes, and thus influenced the average fibre diameter. This expands the current understanding between amylopectin molecular structure and starch electrospinning, thereby assisting a better choice of starches for desired electrospinnability properties.


Assuntos
Amilopectina , Amilose , Amilopectina/química , Amilose/química , Carboidratos , Fibras na Dieta , Estrutura Molecular , Amido/química , Viscosidade
20.
Carbohydr Polym ; 256: 117518, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483039

RESUMO

This study aims to understand the starch molecular structural changes from baking sugar-snap cookies. Changes in the whole-molecule size distribution and chain-length distribution of the parent wheat flour and from final cookie products were measured by size-exclusion chromatography with and without enzymatic debranching, and the results fitted by two biosynthesis-based models. Fraction crystallinity was also analyzed. After cooking, there was a significant decrease in average molecular sizes of amylopectin and in the average lengths of amylose chains, and some starch granules lost birefringence. However, the chain-length distributions of amylopectin showed no noticeable difference, resulting in little change in relative crystallinity and gelatinization temperatures. Both the short-range ordered structure and the periodic lamellar structure were disrupted. This study provides new insight into starch structural changes in sugar-snap cookies after baking, which play an important role in determining final cookie quality. For example, a decrease in size of amylose chains influences cookie sensory properties, and thus can be used as an additional tool for choice of grains.


Assuntos
Amilopectina/química , Amilose/química , Farinha/análise , Açúcares/química , Triticum/química , Birrefringência , Culinária/métodos , Cristalização , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA