Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 27(45): 455605, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727146

RESUMO

SiO2-Ag-SiO2, a sandwiched core/shell structure with a layer of Ag nanoparticles (∼4 nm) encapsulated between a shallow SiO2 surface layer and a SiO2 submicrosphere substrate (∼200 nm), has been synthesized from [Formula: see text] and SiO2 spheres by a facile one-pot hydrothermal method. The composite is proposed to result from the dynamic balance between the [Formula: see text] reduction and the dissolution-redeposition of SiO2 in mild basic media. The synthetic mechanism and the roles of the reaction time, temperature, and the amount of ammonia in the formation of this unique structure are investigated and discussed. The composite structure shows superior catalytic performance in CO oxidation to the control Ag/SiO2 structure prepared by impregnation. Pre-treatment by O2 at 600 °C significantly improves the catalytic performance of the composite structure and preserves the nanocomposite structure well.

2.
ACS Appl Mater Interfaces ; 13(45): 53314-53322, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34038635

RESUMO

Doping conjugated polymers, which are potential candidates for the next generation of organic electronics, is an effective strategy for manipulating their electrical conductivity. However, selecting a suitable polymer-dopant combination is exceptionally challenging because of the vastness of the chemical, configurational, and morphological spaces one needs to search. In this work, high-performance surrogate models, trained on available experimentally measured data, are developed to predict the p-type electrical conductivity and are used to screen a large candidate hypothetical data set of more than 800 000 polymer-dopant combinations. Promising candidates are identified for synthesis and device fabrication. Additionally, new design guidelines are extracted that verify and extend knowledge on important molecular fragments that correlate to high conductivity. Conductivity prediction models are also deployed at www.polymergenome.org for broader open-access community use.

3.
Sci Adv ; 7(50): eabi5197, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890231

RESUMO

Frenkel excitons are unequivocally responsible for the optical properties of organic semiconductors and are predicted to form bound exciton pairs (biexcitons). These are key intermediates, ubiquitous in many photophysical processes such as the exciton bimolecular annihilation dynamics in such systems. Because of their spectral ambiguity, there has been, to date, only scant direct evidence of bound biexcitons. By using nonlinear coherent spectroscopy, we identify here bound biexcitons in a model polymeric semiconductor. We find, unexpectedly, that excitons with interchain vibronic dispersion reveal intrachain biexciton correlations and vice versa. Moreover, using a Frenkel exciton model, we relate the biexciton binding energy to molecular parameters quantified by quantum chemistry, including the magnitude and sign of the exciton-exciton interaction the intersite hopping energies. Therefore, our work promises general insights into the many-body electronic structure in polymeric semiconductors and beyond, e.g., other excitonic systems such as organic semiconductor crystals, molecular aggregates, photosynthetic light-harvesting complexes, or DNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA