Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Appl Environ Microbiol ; 80(9): 2693-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24561582

RESUMO

The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 µM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.


Assuntos
Iodetos/metabolismo , Manganês/metabolismo , Roseobacter/metabolismo , Superóxidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Oxirredução , Roseobacter/enzimologia , Roseobacter/genética , Roseobacter/isolamento & purificação , Água do Mar/microbiologia
2.
Environ Sci Technol ; 48(19): 11218-26, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25219373

RESUMO

(129)I derived from a former radionuclide disposal basin located on the Savannah River Site (SRS) has concentrated in a wetland 600 m downstream. To evaluate temporal environmental influences on iodine speciation and mobility in this subtropical wetland environment, groundwater was collected over a three-year period (2010-2012) from a single location. Total (127)I and (129)I showed significant temporal variations, ranging from 68-196 nM for (127)I and <5-133 pCi/L for (129)I. These iodine isotopes were significantly correlated with groundwater acidity and nitrate, two parameters elevated within the contaminant plume. Additionally, (129)I levels were significantly correlated with those of (127)I, suggesting that biogeochemical controls on (127)I and (129)I are similar within the SRS aquifer/wetland system. Iodine speciation demonstrates temporal variations as well, reflecting effects from surface recharges followed by acidification of groundwater and subsequent formation of anaerobic conditions. Our results reveal a complex system where few single ancillary parameters changed in a systematic manner with iodine speciation. Instead, changes in groundwater chemistry and microbial activity, driven by surface hydrological events, interact to control iodine speciation and mobility. Future radiological risk models should consider the flux of (129)I in response to temporal changes in wetland hydrologic and chemical conditions.


Assuntos
Água Subterrânea/análise , Radioisótopos do Iodo/análise , Iodo/análise , Rios/química , Poluentes Radioativos da Água/análise , Água Subterrânea/química , Hidrologia/métodos , Isótopos de Iodo/análise , Modelos Teóricos , Fatores de Risco , South Carolina , Áreas Alagadas
3.
Environ Sci Technol ; 47(17): 9635-42, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23885783

RESUMO

The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounted for up to 84% of the total iodine present. The alkaline pH (pH ∼ 8) and predominantly oxidizing environment may have prevented reduction of the iodate. In addition, groundwater samples were found to have large amounts of calcite precipitate which were likely formed as a result of CO2 degassing during removal from the deep subsurface (>70m depth). Further analyses indicated that between 7 and 40% of the dissolved (127)I and (129)I that was originally in the groundwater had coprecipitated in the calcite. Iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevating the pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of (129)I. Furthermore, the common sampling artifact resulting in the precipitation of calcite by degassing CO2, had the unintended consequence of providing insight into a potential solution for the in situ remediation of groundwater (129)I.


Assuntos
Carbonato de Cálcio/química , Água Subterrânea/análise , Iodatos/química , Iodo/análise , Poluentes Radioativos da Água/análise , Carbonato de Cálcio/análise , Carbonatos/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Iodatos/análise , Radioisótopos do Iodo/análise , Oxigênio/análise , Washington
4.
Environ Sci Technol ; 46(9): 4837-44, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22455542

RESUMO

To develop an understanding of the role that microorganisms play in the transport of (129)I in soil-water systems, bacteria isolated from subsurface sediments were assessed for iodide oxidizing activity. Spent liquid medium from 27/84 bacterial cultures enhanced iodide oxidation 2-10 fold in the presence of H(2)O(2). Organic acids secreted by the bacteria were found to enhance iodide oxidation by (1) lowering the pH of the spent medium, and (2) reacting with H(2)O(2) to form peroxy carboxylic acids, which are extremely strong oxidizing agents. H(2)O(2)-dependent iodide oxidation increased exponentially from 8.4 to 825.9 µM with decreasing pH from 9 to 4. Organic acids with ≥2 carboxy groups enhanced H(2)O(2)-dependent iodide oxidation (1.5-15-fold) as a function of increasing pH above pH 6.0, but had no effect at pH ≤ 5.0. The results indicate that as pH decreases (≤5.0), increasing H(2)O(2) hydrolysis is the driving force behind iodide oxidation. However, at pH ≥ 6.0, spontaneous decomposition of peroxy carboxylic acids, generated from H(2)O(2) and organic acids, contributes significantly to iodide oxidation. The results reveal an indirect microbial mechanism, organic acid secretion coupled to H(2)O(2) production, that could enhance iodide oxidation and organo-iodine formation in soils and sediments.


Assuntos
Iodetos/química , Microbiologia do Solo , Poluentes Radioativos do Solo/química , Bactérias/metabolismo , Ácidos Carboxílicos/química , Peróxido de Hidrogênio/química , Radioisótopos do Iodo/química , Oxirredução
5.
Appl Environ Microbiol ; 77(6): 2153-60, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278282

RESUMO

(129)I is of major concern because of its mobility in the environment, excessive inventory, toxicity (it accumulates in the thyroid), and long half-life (∼16 million years). The aim of this study was to determine if bacteria from a (129)I-contaminated oxic aquifer at the F area of the U.S. Department of Energy's Savannah River Site, SC, could accumulate iodide at environmentally relevant concentrations (0.1 µM I(-)). Iodide accumulation capability was found in 3 out of 136 aerobic bacterial strains isolated from the F area that were closely related to Streptomyces/Kitasatospora spp., Bacillus mycoides, and Ralstonia/Cupriavidus spp. Two previously described iodide-accumulating marine strains, a Flexibacter aggregans strain and an Arenibacter troitsensis strain, accumulated 2 to 50% total iodide (0.1 µM), whereas the F-area strains accumulated just 0.2 to 2.0%. Iodide accumulation by FA-30 was stimulated by the addition of H(2)O(2), was not inhibited by chloride ions (27 mM), did not exhibit substrate saturation kinetics with regard to I(-) concentration (up to 10 µM I(-)), and increased at pH values of <6. Overall, the data indicate that I(-) accumulation likely results from electrophilic substitution of cellular organic molecules. This study demonstrates that readily culturable, aerobic bacteria of the F-area aquifer do not accumulate significant amounts of iodide; however, this mechanism may contribute to the long-term fate and transport of (129)I and to the biogeochemical cycling of iodine over geologic time.


Assuntos
Bactérias Aeróbias/metabolismo , Sedimentos Geológicos/análise , Radioisótopos do Iodo/metabolismo , Monitoramento Ambiental , Radioisótopos do Iodo/análise , Filogenia , RNA Ribossômico 16S/genética , Rios , South Carolina
6.
Environ Sci Technol ; 45(23): 9975-83, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22035296

RESUMO

In order to investigate the distributions and speciation of (129)I (and (127)I) in a contaminated F-Area groundwater plume of the Savannah River Site that cannot be explained by simple transport models, soil resuspension experiments simulating surface runoff or stormflow and erosion events were conducted. Results showed that 72-77% of the newly introduced I(-) or IO(3)(-) were irreversibly sequestered into the organic-rich riparian soil, while the rest was transformed by the soil into colloidal and truly dissolved organo-iodine, resulting in (129)I remobilization from the soil greatly exceeding the 1 pCi/L drinking water permit. This contradicts the conventional view that only considers I(-) or IO(3)(-) as the mobile forms. Laboratory iodination experiments indicate that iodine likely covalently binds to aromatic structures of the soil organic matter (SOM). Under very acidic conditions, abiotic iodination of SOM was predominant, whereas under less acidic conditions (pH ≥5), microbial enzymatically assisted iodination of SOM was predominant. The organic-rich soil in the vadose zone of F-Area thus acts primarily as a "sink," but may also behave as a potentially important vector for mobile radioiodine in an on-off carrying mechanism. Generally the riparian zone provides as a natural attenuation zone that greatly reduces radioiodine release.


Assuntos
Radioisótopos do Iodo/química , Compostos Orgânicos/química , Poluentes do Solo/química , Solo/química , Poluentes Radioativos da Água/química , Recuperação e Remediação Ambiental , Rios
7.
Environ Sci Technol ; 45(2): 489-95, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21138294

RESUMO

Field and laboratory studies were carried out to understand the cause for steady increases in (129)I concentrations emanating from radiological basins located on the Savannah River Site, South Carolina. The basins were closed in 1988 by adding limestone and slag and then capping with a low permeability engineered cover. Groundwater (129)I concentrations in a well near the basins in 1993 were 200 pCi L(-1) and are presently between 400 and 1000 pCi L(-1). Iodine speciation in the plume contained wide ranges of iodide, iodate, and organo-iodine concentrations. First-order calculations based on a basin sediment desorption study indicate that the modest increase of 0.7 pH units detected in the study site groundwater over the last 17 years since closure of the basins may be sufficient to produce the observed increased groundwater (129)I concentrations near the basins. Groundwater monitoring of the plume at the basins has shown that the migration of many of the high risk radionuclides originally present at this complex site has been attenuated. However, (129)I continues to leave the source at a rate that may have been exacerbated by the initial remediation efforts. This study underscores the importance of identifying the appropriate in situ stabilization technologies for all source contaminants, especially if their geochemical behaviors differ.


Assuntos
Radioisótopos do Iodo/análise , Monitoramento de Radiação/métodos , Rios/química , Poluentes Radioativos da Água/análise , Adsorção , Recuperação e Remediação Ambiental/métodos , Radioisótopos do Iodo/química , South Carolina , Movimentos da Água , Poluentes Radioativos da Água/química
9.
J Nurs Res ; 23(1): 41-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25233070

RESUMO

BACKGROUND: Medication administration errors (MAEs) account for most medication errors, which not only threaten the safety of patients and increase hospital medical costs but also damage the personal and professional development of affected nurses. A feasible instrument measures the perceptions of committing an MAE that may provide support for nurses. PURPOSE: The purpose of this study was to conduct psychometric testing of the Inventory of Perceptions for Medication Administration Errors (IPMAE). METHODS: Psychometric testing of the IPMAE used snowball sampling to collect data from nurse volunteers. Six hundred eighteen nurses completed the IPMAE and a personal profile. The construct validity and the Cronbach's alpha of the inventory were tested. RESULTS: The results indicated that the 12-item IPMAE consisted of four factors, including coping strategy, emotional reaction, fear of blame, and segregation behavior. These four factors accounted for 78.8% of the total variance. The IPMAE showed that both fit indices and Cronbach's alpha coefficients (overall = .90 and subscales = .83-.88) were acceptable. CONCLUSIONS/IMPLICATIONS FOR PRACTICE: The IPMAE is a valid and reliable instrument for measuring perceptions of MAE occurring among nurses. Nursing directors may use the results generated by the IPMAE to help reduce the negative consequences of MAE events among nurses.


Assuntos
Atitude do Pessoal de Saúde , Erros de Medicação/psicologia , Recursos Humanos de Enfermagem Hospitalar/psicologia , Testes Psicológicos/normas , Adaptação Psicológica , Adulto , Estudos Transversais , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Pessoa de Meia-Idade , Psicometria/instrumentação , Reprodutibilidade dos Testes , Estresse Psicológico/psicologia , Inquéritos e Questionários , Taiwan , Adulto Jovem
10.
J Environ Radioact ; 139: 43-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25464040

RESUMO

During the last few decades, considerable research efforts have been extended to identify more effective remediation treatment technologies to lower the (129)I concentrations to below federal drinking water standards at the Hanford Site (Richland, USA). Few studies have taken iodate into consideration, though recently iodate, instead of iodide, was identified as the major species in the groundwater of 200-West Area within the Hanford Site. The objective of this study was thus to quantify and understand aqueous radioiodine species transformations and uptake by three sediments collected from the semi-arid, carbonate-rich environment of the Hanford subsurface. All three sediments reduced iodate (IO3(-)) to iodide (I(-)), but the loamy-sand sediment reduced more IO3(-) (100% reduced within 7 days) than the two sand-textured sediments (∼20% reduced after 28 days). No dissolved organo-iodine species were observed in any of these studies. Iodate uptake Kd values ([Isolid]/[Iaq]; 0.8-7.6 L/kg) were consistently and appreciably greater than iodide Kd values (0-5.6 L/kg). Furthermore, desorption Kd values (11.9-29.8 L/kg) for both iodate and iodide were consistently and appreciably greater than uptake Kd values (0-7.6 L/kg). Major fractions of iodine associated with the sediments were unexpectedly strongly bound, such that only 0.4-6.6 % of the total sedimentary iodine could be exchanged from the surface with KCl solution, and 0-1.2% was associated with Fe or Mn oxides (weak NH2HCl/HNO3 extractable fraction). Iodine incorporated into calcite accounted for 2.9-39.4% of the total sedimentary iodine, whereas organic carbon (OC) is likely responsible for the residual iodine (57.1-90.6%) in sediments. The OC, even at low concentrations, appeared to be controlling iodine binding to the sediments, as it was found that the greater the OC concentrations in the sediments, the greater the values of uptake Kd, desorption Kd, and the greater residual iodine concentrations (non-exchangeable, non-calcite-incorporated and non-Mn, Fe-oxide associated). This finding is of particular interest because it suggests that even very low OC concentrations, <0.2%, may have an impact on iodine geochemistry. The findings that these sediments can readily reduce IO3(-), and that IO3(-) sorbs to a greater extent than I(-), sheds light into earlier unexplained Hanford field data that demonstrated increases in groundwater (127)I(-)/(127)IO3(-) ratios and a decrease groundwater (129)IO3(-) concentrations along a transect away from the point sources, where iodine was primarily introduced as IO3(-). While a majority of the radioiodine does not bind to these alkaline sediments, there is likely a second smaller iodine fraction in the Hanford subsurface that is strongly bound, presumably to the sediment OC (and carbonate) phases. This second fraction may have an impact on establishing remediation goals and performance assessment calculations.


Assuntos
Sedimentos Geológicos/análise , Radioisótopos do Iodo/análise , Carbonatos/análise , Água Subterrânea/análise
11.
J Environ Radioact ; 131: 57-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24075117

RESUMO

Most subsurface environmental radioactivity contamination is expected to eventually resurface in riparian zones, or wetlands. There are a number of extremely sharp biogeochemical interfaces in wetlands that could alter radionuclide speciation and promote accumulation. The objective of this study was to determine if a wetland concentrated (129)I emanating from a former waste disposal basin located on the Savannah River Site (SRS) in South Carolina, USA. Additionally, studies were conducted to evaluate the role of sediment organic matter in immobilizing the radioiodine. Groundwater samples were collected along a 0.7-km transect away from the seepage basin and in the downstream wetlands. The samples were analyzed for (129)I speciation (iodide (I(-)), iodate (IO3(-)), and organo-I). Groundwater (129)I concentrations in many locations in the wetlands (as high as 59.9 Bq L(-1)(129)I) were greatly elevated with respect to the source term (5.9 Bq L(-1)(129)I). (129)I concentration profiles in sediment cores were closely correlated to organic matter concentrations (r(2) = 0.992; n = 5). While the sediment organic matter promoted the uptake of (129)I to the wetland sediment, it also promoted the formation of a soluble organic fraction: 74% of the wetland groundwater (129)I could pass through a 1 kDa (<1 nm) membrane and only 26% of the (129)I was colloidal. Of that fraction that could pass through a 1 kDa membrane, 39% of the (129)I was organo-I. Therefore, while wetlands may be highly effective at immobilizing aqueous (129)I, they may also promote the formation of a low-molecular-weight organic species that does not partition to sediments. This study provides a rare example of radioactivity concentrations increasing rather than decreasing as it migrates from a point source and brings into question assumptions in risk models regarding continuous dilution of released contaminants.


Assuntos
Radioisótopos do Iodo/análise , Poluentes Radioativos da Água/análise , Áreas Alagadas , Sedimentos Geológicos/análise , Água Subterrânea/análise , Monitoramento de Radiação , South Carolina
12.
Sci Total Environ ; 497-498: 671-678, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25173764

RESUMO

A primary obstacle in understanding the fate and transport of the toxic radionuclide (129)I (a thyroid seeker) is an accurate method to distinguish it from the stable isotope, (127)I, and to quantify the various species at environmentally relevant concentrations (~10(-8) M). A pH-dependent solvent extraction and combustion method was paired with accelerator mass spectrometry (AMS) to measure ambient levels of (129)I/(127)I isotope ratios and iodine speciation (iodide (I(-)), iodate (IO3(-)), and organo-I (OI)) in aquatic systems. The method exhibited an overall uncertainty of 10% or less for I(-) and IO3(-), and less than 30% for OI species concentrations and enabled (129)I measurements as low as 0.001 Bq/L (1 Bq/L=10(-13) M). The method was used to analyze groundwater from the Savannah River Site (SRS), South Carolina, USA, along a pH, redox potential (Eh), and organic carbon gradient (8-60 µM DOC). The data confirmed that the (129)I/(127)I ratios and species distribution were strongly pH dependent and varied in a systematic manner from the strongly acidic source. While (129)I speciation in plume samples containing total I concentrations >1.7 Bq/L was similar whether measured by AMS or GC-MS ([I(-)]≫[IO3(-)]=[OI]), AMS enabled (129)I speciation measurements at much lower concentrations than what was possible with GC-MS. AMS analyses demonstrated that groundwater samples minimally impacted by the plume were still orders of magnitude higher than ambient (129)I concentrations typically found elsewhere in the USA groundwaters and rivers. This is likely due to past atmospheric releases of volatile (129)I species by SRS nuclear reprocessing facilities near the study site. Furthermore, the results confirmed the existence of (129)I not only as I(-), but also as OI and IO3(-) species.


Assuntos
Monitoramento Ambiental , Isótopos de Iodo/análise , Poluentes Químicos da Água/análise , Rios/química , South Carolina , Movimentos da Água
13.
Sci Total Environ ; 449: 244-52, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23428755

RESUMO

Major fractions of radioiodine ((129)I) are associated with natural organic matter (NOM) in the groundwater and surface soils of the Savannah River Site (SRS). Electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) was applied to elucidate the interactions between inorganic iodine species (iodide and iodate) and a fulvic acid (FA) extracted from a SRS surface soil. Iodate is likely reduced to reactive iodine species by the lignin- and tannin-like compounds or the carboxylic-rich alicyclic molecules (CRAM), during which condensed aromatics and lignin-like compounds were generated. Iodide is catalytically oxidized into reactive iodine species by peroxides, while FA is oxidized by peroxides into more aliphatic and less aromatic compounds. Only 9% of the total identified organo-iodine compounds derived from molecules originally present in the FA, whereas most were iodine binding to newly-produced compounds. The resulting iodinated molecules were distributed in three regions in the van Krevelen diagrams, denoting unsaturated hydrocarbons, lignin and protein. Moreover, characteristics of these organo-iodine compounds, such as their relatively low O/C ratios (<0.2 or <0.4) and yet some degree of un-saturation close to that of lignin, have multiple important environmental implications concerning possibly less sterically-hindered aromatic ring system for iodine to get access to and a lower hydrophilicity of the molecules thus to retard their migration in the natural aquatic systems. Lastly, ~69% of the identified organo-iodine species contains nitrogen, which is presumably present as NH2 or HNCOR groups and a ring-activating functionality to favor the electrophilic substitution. The ESI-FTICR-MS technique provides novel evidence to better understand the reactivity and scavenging properties of NOM towards radioiodine and possible influence of NOM on (129)I migration.

14.
Sci Total Environ ; 409(19): 3857-65, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21641630

RESUMO

In order to quantify changes in iodine speciation and to assess factors controlling the distribution and mobility of iodine at an iodine-129 ((129)I) contaminated site located at the U.S. Department of Energy's Savannah River Site (SRS), spatial distributions and transformation of (129)I and stable iodine ((127)I) species in groundwater were investigated along a gradient in redox potential (654 to 360 mV), organic carbon concentration (5 to 60 µmol L(-1)), and pH (pH 3.2 to 6.8). Total (129)I concentration in groundwater was 8.6±2.8 Bq L(-1) immediately downstream of a former waste seepage basin (well FSB-95DR), and decreased with distance from the seepage basin. (127)I concentration decreased similarly to that of (129)I. Elevated concentrations of (127)I or (129)I were not detected in groundwater collected from wells located outside of the mixed waste plume of this area. At FSB-95DR, the majority (55-86%) of iodine existed as iodide for both (127)I and (129)I. Then, as the iodide move down gradient, some of it transformed into iodate and organo-iodine. Considering that iodate has a higher K(d) value than iodide, we hypothesize that the production of iodate in groundwater resulted in the removal of iodine from the groundwater and consequently decreased concentrations of (127)I and (129)I in downstream areas. Significant amounts of organo-iodine species (30-82% of the total iodine) were also observed at upstream wells, including those outside the mixed waste plume. Concentrations of groundwater iodide decreased at a faster rate than organo-iodine along the transect from the seepage basin. We concluded that removal of iodine from the groundwater through the formation of high molecular weight organo-iodine species is complicated by the release of other more mobile organo-iodine species in the groundwater.


Assuntos
Água Subterrânea/química , Isótopos de Iodo/química , Radioisótopos do Iodo/química , Rios/química , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Isótopos de Iodo/análise , Radioisótopos do Iodo/análise , Oxirredução , Estados Unidos , United States Government Agencies , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA