Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Clin Immunol ; 265: 110278, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878806

RESUMO

Nucleotide-binding leucine-rich repeat-containing receptor 12-associated autoinflammatory disease (NLRP12-AID) is a rare autosomal dominant disorder. In this study, we reported a case of this rare disease with a novel NLRP12 mutation (A218V, rs749659859). The patient displayed typical symptoms, including recurrent fever, arthralgia, and skin allergies. Elevated serum IgE, decreased apolipoprotein A1, high-density lipoprotein cholesterol, and fluctuating levels of various leukocyte subtypes, procalcitonin, IL6, creatine kinase, and 25-hydroxyvitamin D were also detected. Inflammatory lesions were observed in multiple organs using 18F-FDG PET/CT. By mining single-cell transcriptome data, we identified relatively high expression of NLRP12 in monocytes compared to other human peripheral blood mononuclear cells. NLRP12-positive monocytes exhibited reduced expression of IL18, CCL3, and TNFA compared to NLRP12-negative monocytes. Structural analyses suggested that the A218V mutation, along with A218T and F402L, may reduce the ATP-binding affinity of the NLRP12 protein. These findings may provide new insights into the mechanisms of NLRP12-AID, and suggest the potential ATP-based therapy for further investigation.


Assuntos
Biologia Computacional , Doenças Hereditárias Autoinflamatórias , Mutação , Humanos , Biologia Computacional/métodos , Doenças Hereditárias Autoinflamatórias/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Monócitos/imunologia , Monócitos/metabolismo , Feminino , Adulto
2.
EMBO Rep ; 23(9): e54611, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35833522

RESUMO

Inflammasomes are cytosolic multiprotein complexes that initiate host defense against bacterial pathogens. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family caspase-associated recruitment domain-containing protein 4 (NLRC4) inflammasomes plays a critical role in the inflammatory response against intracellular bacterial infection. The NLR family apoptosis inhibitory proteins (NAIPs) detect Flagellin or type III secretion system (T3SS) microbial components to activate NLRC4 inflammasome. However, the underlying mechanism of NLRC4 inflammasome activation is not completely understood. Here, we show that the vitamin D receptor (VDR) is an essential immunological regulator of the NLRC4 inflammasome. Conditional VDR knockout mice (VDRflox/flox lyz2-Cre) exhibited impaired clearance of pathogens after acute Salmonella Typhimurium infection leading to poor survival. In macrophages, VDR deficiency reduced caspase-1 activation and IL-1ß secretion upon S. Typhimurium infection. For NAIPs act as upstream sensors for NLRC4 inflammasome assembly, the further study demonstrated that VDR promoted the NAIP-NLRC4 association and triggered NAIP-NLRC4 inflammasome activation, not NLRP3 activation. Moreover, Lys123 residue of VDR is identified as the critical amino acid for VDR-NLRC4 interaction, and the mutant VDR (K123A) effectively attenuates the NLRC4 inflammasome activation. Together, our findings suggest that VDR is a critical regulator of NAIPs-NLRC4 inflammasome activation, mediating innate immunity against bacterial infection.


Assuntos
Proteínas Reguladoras de Apoptose , Infecções Bacterianas , Proteínas de Ligação ao Cálcio , Inflamassomos , Receptores de Calcitriol , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspases/metabolismo , Inflamassomos/metabolismo , Camundongos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
3.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474583

RESUMO

Tobacco etch virus protease (TEVp) is wildly exploited for various biotechnological applications. These applications take advantage of TEVp's ability to cleave specific substrate sequences to study protein function and interactions. A major limitation of this enzyme is its relatively slow catalytic rate. In this study, MD simulations were conducted on TEV enzymes and known highly active mutants (eTEV and uTEV3) to explore the relationship between mutation, conformation, and catalytic function. The results suggest that mutations distant from the active site can influence the substrate-binding pocket through interaction networks. MD analysis of eTEV demonstrates that, by stabilizing the orientation of the substrate at the catalytic site, mutations that appropriately enlarge the substrate-binding pocket will be beneficial for Kcat, enhancing the catalytic efficiency of the enzyme. On the contrary, mutations in uTEV3 reduced the flexibility of the active pocket and increased the hydrogen bonding between the substrate and enzyme, resulting in higher affinity. At the same time, the MD simulation demonstrates that mutations outside of the active site residues could affect the dynamic movement of the binding pocket by altering residue networks and communication pathways, thereby having a profound impact on reactivity. These findings not only provide a molecular mechanistic explanation for the excellent mutants, but also serve as a guiding framework for rational computational design.


Assuntos
Endopeptidases , Simulação de Dinâmica Molecular , Endopeptidases/metabolismo , Biotecnologia , Mutação
4.
Biotechnol Bioeng ; 119(8): 2105-2114, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35438195

RESUMO

EG5C-1, processive endoglucanase from Bacillus subtilis, is a typical bifunctional cellulase with endoglucanase and exoglucanase activities. The engineering of processive endoglucanase focuses on the catalytic pocket or carbohydrate-binding module tailoring based on sequence/structure information. Herein, a computational strategy was applied to identify the desired mutants in the enzyme molecule by evolutionary-coupling analysis; subsequently, four residue pairs were selected as evolutionary mutational hotspots. Based on iterative-saturation mutagenesis and subsequent enzymatic activity analysis, a superior mutant K51T/L93T has been identified away from the active center. This variant had increased specific activity from 4170 U/µmol of wild-type (WT) to 5678 U/µmol towards carboxymethyl cellulose-Na and an increase towards the substrate Avicel from 320 U/µmol in WT to 521 U/µmol. In addition, kinetic measurements suggested that superior mutant K51T/L93T had a high substrate affinity (Km ) and a remarkable improvement in catalytic efficiency (kcat /Km ). Furthermore, molecular dynamics simulations revealed that the K51T/L93T mutation altered the spatial conformation at the active site cleft, enhancing the interaction frequency between active site residues and substrate, and improving catalytic efficiency and substrate affinity. The current studies provided some perspectives on the effects of distal residue substitution, which might assist in the engineering of processive endoglucanase or other glycoside hydrolases.


Assuntos
Celulase , Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Domínio Catalítico , Celulase/química , Celulose/metabolismo
5.
Acta Pharmacol Sin ; 39(9): 1421-1438, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29770796

RESUMO

Fufang Danshen (FFDS or Compound Danshen) consists of three Chinese herbs Danshen (Salviae miltiorrhizae radix et rhizome), Sanqi (Notoginseng radix et rhizome) and Tianranbingpian (Borneolum, or D-borneol), which has been show to significantly improve the function of the nervous system and brain metabolism. In this study we explored the possible mechanisms underlying the therapeutic effects of the combination of the effective components of FFDS (Tan IIA, NG-R1 and Borneol) in the treatment of Alzheimer's disease (AD) based on network pharmacology. We firstly constructed AD-related FFDS component protein interaction networks, and revealed that macrophage migration inhibitory factor (MIF) might regulate neuronal apoptosis through Bad in the progression of AD. Then we investigated the apoptosis-inducing effects of MIF and the impact of the effective components of FFDS in human neuroblastoma SH-SY5Y cells. We observed the characteristics of a "Pendular state" of MIF, where MIF (8 ng/mL) increased the ratio of p-Bad/Bad by activating Akt and the IKKα/ß signaling pathway to assure cell survival, whereas MIF (50 ng/mL) up-regulated the expression of Bad to trigger apoptosis of SH-SY5Y cells. MIF displayed neurotoxicity similar to Aß1-42, which was associated with the MIF-induced increased expression of Bad. Application of the FFDS composite solution significantly decreased the expression levels of Bad, suppressed MIF-induced apoptosis in SH-SY5Y cells. In a D-galactose- and AlCl3-induced AD mouse model, administration of the FFDS composite solution significantly improved the learning and memory, as well as neuronal morphology, and decreased the serum levels of INF-γ. Therefore, the FFDS composite solution exerts neuroprotective effects through down-regulating the level of Bad stimulated by MIF.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos BALB C , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína de Morte Celular Associada a bcl/metabolismo
6.
Protein Expr Purif ; 119: 63-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26621552

RESUMO

Ferritins form nanocage architectures and demonstrate their potential to serve as functional nanomaterials with potential applications in medical imaging and therapy. In our study, the cDNA of human L-chain ferritin was cloned into plasmid pET-28a for its overexpression in Escherichia coli. However, the recombinant human L-chain ferritin (rLF) was prone to form inclusion bodies. Molecular chaperones were co-expressed with rLF to facilitate its correct folding. Our results showed that the solubility of rLF was increased about 3-fold in the presence of molecular chaperones, including GroEL, GroES and trigger factor. Taking advantage of its N-terminal His-tag, rLF was then purified with Ni-affinity chromatography. With a yield of 10 mg/L from bacterial culture, the purified rLF was analyzed by circular dichroism spectrometry for its secondary structure. Furthermore, the rLF nanocages were characterized using dynamic light scattering and transmission electron microscopy.


Assuntos
Apoferritinas/biossíntese , Apoferritinas/química , Apoferritinas/isolamento & purificação , Cromatografia de Afinidade , Escherichia coli , Expressão Gênica , Humanos , Nanopartículas/química , Tamanho da Partícula , Estrutura Secundária de Proteína
7.
Prep Biochem Biotechnol ; 46(8): 833-837, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26853188

RESUMO

Based on their nanocage architectures, ferritins show their potential applications in medical imaging and therapeutic delivery systems. However, the recombinant human H-chain ferritin (rHF) is prone to form inclusion bodies in Escherichia coli. In our study, the cDNA of rHF was cloned into plasmid pET28a under the control of a T7 promoter. Molecular chaperones, including GroES, GroEL, and trigger factor, were coexpressed with rHF to facilitate its correct folding. The results showed that the solubility of rHF was increased more than threefold with the help of molecular chaperones. Taking advantages of its N-terminal His-tag, rHF was then purified with Ni-affinity chromatography. With a yield of 15 mg/L from bacterial culture, the purified rHF was analyzed by circular dichroism spectrometry for its secondary structure. Moreover, the rHF nanocages were characterized by transmission electron microscopy and dynamic light scattering. Our results indicate that rHF is able to self-assemble into nanocages with a narrow size distribution.


Assuntos
Apoferritinas/química , Apoferritinas/genética , Apoferritinas/isolamento & purificação , Apoferritinas/ultraestrutura , Clonagem Molecular , Escherichia coli/genética , Vetores Genéticos/genética , Humanos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Solubilidade
8.
Biopolymers ; 103(5): 247-59, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25403814

RESUMO

The Schistosoma juponicum 26 kDa glutathione S-transferase (sj26GST) consists of the N-terminal domain (N-domain), containing three alpha-helices (named H1-H3) and four anti-parallel beta-strands (S1-S4), and the C-terminal domain (C-domain), comprising five alpha-helices (named H4-H8). In present work, molecular dynamics simulations and fluorescence spectroscopic were used to gain insights into the unfolding process of sj26GST. The molecular dynamics simulations on sj26GST subunit both in water and in 8 M urea were carried out at 300 K, 400 K and 500 K, respectively. Spectroscopic measurements were employed to monitor structural changes. Molecular dynamics simulations of sj26GST subunit induced by urea and temperature showed that the initial unfolding step of sj26GST both in water and urea occurred on N-domain, involving the disruption of helices H2, H3 and strands S3 and S4, whereas H6 was the last region exposed to solution and was the last helix to unfold. Moreover, simulations analyses combining with fluorescence and circular dichroism spectra indicated that N-domain could not fold independent, suggesting that correct folding of N-domain depended on its interactions with C-domain. We further proposed that the folding of GSTs could begin with the hydrophobic collapse of C-domain whose H4, H5, H6 and H7 could move close to each other and form a hydrophobic core, especially H6 wrapped in the hydrophobic center and beginning spontaneous formation of the helix. S3, S4, H3, and H2 could form in the wake of the interaction between C-domain and N-domain. The paper can offer insights into the molecular mechanism of GSTs unfolding.


Assuntos
Glutationa Transferase/química , Ureia/química , Dicroísmo Circular , Temperatura Alta , Simulação de Dinâmica Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína
9.
Transfus Apher Sci ; 51(2): 203-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25217989

RESUMO

BACKGROUND: Serological analysis of ABO blood group has been widely applied in transfusion medicine. However, ABO subgroups with different expression of blood group antigens sometimes cannot be determined by serological methods. Therefore, genotyping is useful to understand the variant ABO phenotypes. MATERIAL AND METHODS: Exon 6 to exon 7 and adjacent introns of the ABO gene from a donor with ABO typing discrepancy were amplified and sequenced. Cloning sequencing was also performed to identify the allele. To explore the effect of mutation, three dimensional model of mutant p.Pro234Ala was built and optimized. RESULTS: The variant B (c. 700C > G) allele expressed an AweakB phenotype with anti-A in his serum with a ABO*B(A)02/O02 heterozygote genotype. Cloning sequencing confirmed that the c.700C > G single nucleotide polymorphism was associated with a B101 allele. Three dimensional molecular modeling suggested that p.Pro234Ala might affect the conformation of His233, Met266 and Ala268, which were known as critical residues for donor recognition. CONCLUSION: ABO genotyping is needed for correct identification subgroups to improve accuracy evaluation of blood typing and increase the safety of blood transfusion. Alteration of DNA sequence in the ABO gene resulted in amino acid substitutions and led to a weak or missing expression of ABO antigens.


Assuntos
Sistema ABO de Grupos Sanguíneos , Alelos , Regulação da Expressão Gênica , Modelos Moleculares , Mutação de Sentido Incorreto , Sistema ABO de Grupos Sanguíneos/biossíntese , Sistema ABO de Grupos Sanguíneos/química , Sistema ABO de Grupos Sanguíneos/genética , Adulto , Substituição de Aminoácidos , Análise Mutacional de DNA , Técnicas de Genotipagem , Humanos , Masculino , Estrutura Terciária de Proteína
10.
Int J Biol Macromol ; 255: 128303, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992939

RESUMO

Efficient synthetic routes for biomanufacturing chemicals often require the overcoming of pathway bottlenecks by tailoring enzymes to improve the catalytic efficiency or even implement non-native activities. 1,2,4-butanetriol (BTO), a valuable commodity chemical, is currently biosynthesized from D-xylose via a four-enzyme reaction cascade, with the ThDP-dependent α-keto acid decarboxylase (KdcA) identified as the potential bottleneck. Here, to further enhance the catalytic activity of KdcA toward the non-native substrate α-keto-3-deoxy-xylonate (KDX), in silico screening and structure-guided evolution were performed. The best mutants, S286L/G402P and V461K, exhibited a 1.8- and 2.5-fold higher enzymatic activity in the conversion of KDX to 3,4-dihydroxybutanal when compared to KdcA, respectively. MD simulations revealed that the two sets of mutations reshaped the substrate binding pocket, thereby increasing the binding affinity for KDX and promoting interactions between KDX and cofactor ThDP. Then, when the V461K mutant instead of wild type KdcA was integrated into the enzyme cascade, a 1.9-fold increase in BTO titer was observed. After optimization of the reaction conditions, the enzyme cocktail contained V461K converted 60 g/L D-xylose to 22.1 g/L BTO with a yield of 52.1 %. This work illustrated that protein engineering is a powerful tool for modifying the output of metabolic pathway.


Assuntos
Carboxiliases , Xilose , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Xilose/metabolismo , Butanóis , Carboxiliases/genética , Engenharia Metabólica
11.
J Phys Chem B ; 128(39): 9385-9395, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39315758

RESUMO

This study conducts a systematic investigation into the catalytic mechanism of norcoclaurine synthase (NCS), a key enzyme in the biosynthesis of tetrahydroisoquinolines (THIQs) with therapeutic applications. By integration of LiGaMD and DFT calculations, the reaction pathway of NCS is mapped, providing detailed insights into its catalytic activity and selectivity. Our findings underscore the critical role of E103 in substrate capture and reveal the hitherto unappreciated influence of nonpolar residues M183 and L76 on tunnel dynamics. A prominent discovery is the identification of a high-energy barrier (44.2 kcal/mol) associated with the aromatic electrophilic attack, which pinpoints the rate-limiting step. Moreover, we disclose the existence of dual transition states leading to different products with the energetically favored six-membered ring formation consistent with experimental evidence. These mechanistic revelations not only refine our understanding of NCS but also advocate for a renewed emphasis on enzyme tunnel engineering for optimizing THIQs biosynthesis. The research sets the stage for translating these findings into practical enzyme modifications. Our results highlight the potential of NCS as a biocatalyst to overcome the limitations of current synthetic methodologies, such as low yields and environmental impacts, and provide a theoretical contribution to the efficient, eco-friendly production of THIQs-based pharmaceuticals.


Assuntos
Biocatálise , Teoria da Densidade Funcional , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/química , Simulação de Dinâmica Molecular
12.
Br J Pharmacol ; 181(11): 1614-1634, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38158217

RESUMO

BACKGROUND AND PURPOSE: Because of cervical cancer (CC) metastasis, the prognosis of diagnosed patients is poor. However, the molecular mechanisms and therapeutic approach for metastatic CC remain elusive. EXPERIMENTAL APPROACH: In this study, we first evaluated the effect of resveratrol (RSV) on CC cell migration and metastasis. Via an activity-based protein profiling (ABPP) approach, a photoaffinity probe of RSV (RSV-P) was synthesized, and the protein targets of RSV in HeLa cells were identified. Based on target information and subsequent in vivo and in vitro validation experiments, we finally elucidated the mechanism of RSV corresponding to its antimetastatic activity. KEY RESULTS: The results showed that RSV concentration-dependently suppressed CC cell migration and metastasis. A list of proteins was identified as the targets of RSV, through the ABPP approach with RSV-P, among which fatty acid binding protein 5 (FABP5) attracted our attention based on The Cancer Genome Atlas (TCGA) database analysis. Subsequent knockout and overexpression experiments confirmed that RSV directly interacted with FABP5 to inhibit fatty acid transport into the nucleus, thereby suppressing downstream matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9) expression, thus inhibiting CC metastasis. CONCLUSIONS AND IMPLICATIONS: Our study confirmed the key role of FABP5 in CC metastasis and provided important target information for the design of therapeutic lead compounds for metastatic CC.


Assuntos
Proteínas de Ligação a Ácido Graxo , Ácidos Graxos , Resveratrol , Neoplasias do Colo do Útero , Humanos , Resveratrol/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Feminino , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Ácidos Graxos/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Células HeLa , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Metástase Neoplásica , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C , Metaloproteinase 9 da Matriz/metabolismo , Relação Dose-Resposta a Droga
13.
J Trace Elem Med Biol ; 83: 127407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325182

RESUMO

BACKGROUND: Generally, decreased zinc in the serum of tumor patients but increased zinc in tumor cells can be observed. However, the role of zinc homeostasis in myeloid leukemia remains elusive. BCR-ABL is essential for the initiation, maintenance, and progression of chronic myelocytic leukemia (CML). We are currently investigating the association between zinc homeostasis and CML. METHODS: Genes involved in zinc homeostasis were examined using three GEO datasets. Western blotting and qPCR were used to investigate the effects of zinc depletion on BCR-ABL expression. Furthermore, the effect of TPEN on BCR-ABL promoter activity was determined using the dual-luciferase reporter assay. MRNA stability and protein stability of BCR-ABL were assessed using actinomycin D and cycloheximide. RESULTS: Transcriptome data mining revealed that zinc homeostasis-related genes were associated with CML progression and drug resistance. Several zinc homeostasis genes were affected by TPEN. Additionally, we found that zinc depletion by TPEN decreased BCR-ABL mRNA stability and transcriptional activity in K562 CML cells. Zinc supplementation and sodium nitroprusside treatment reversed BCR-ABL downregulation by TPEN, suggesting zinc- and nitric oxide-dependent mechanisms. CONCLUSION: Our in vitro findings may help to understand the role of zinc homeostasis in BCR-ABL regulation and thus highlight the importance of zinc homeostasis in CML.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Apoptose , Etilenodiaminas/farmacologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Proteínas de Fusão bcr-abl/farmacologia , Genes abl , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Zinco/metabolismo
14.
J Biol Chem ; 287(31): 26126-35, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22582393

RESUMO

Protein kinase C (PKC) plays important roles in diverse cellular processes. PKC has been implicated in regulating Fas-associated protein with death domain (FADD), an important adaptor protein involved in regulating death receptor-mediated apoptosis. FADD also plays an important role in non-apoptosis processes. The functional interaction of PKC and FADD in non-apoptotic processes has not been examined. In this study, we show that FADD is involved in maintaining the phosphorylation of the turn motif and hydrophobic motif in the activated conventional PKC (cPKC). A phosphoryl-mimicking mutation (S191D) in FADD (FADD-D) abolished the function of FADD in the facilitation of the turn motif and hydrophobic motif dephosphorylation of cPKC, suggesting that phosphorylation of Ser-191 negatively regulates FADD. We show that FADD interacts with PP2A, which is a major phosphatase involved in dephosphorylation of activated cPKC and FADD deficiency abolished PP2A mediated dephosphorylation of cPKC. We show that FADD deficiency leads to increased stability and activity of cPKC, which, in turn, promotes cytoskeleton reorganization, cell motility, and chemotaxis. Collectively, these results reveal a novel function of FADD in a non-apoptotic process by modulating cPKC dephosphorylation, stability, and signaling termination.


Assuntos
Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos , Animais , Movimento Celular , Citoesqueleto/metabolismo , Estabilidade Enzimática , Proteína de Domínio de Morte Associada a Fas/genética , Células HEK293 , Humanos , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Proteólise , Transdução de Sinais
15.
J Biomed Sci ; 20: 44, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23815775

RESUMO

BACKGROUND: gp340, a member of scavenger receptor cysteine rich family encoded by Deleted in Malignant Brain Tumors 1 (DMBT1), is an important component in innate immune defense. The first scavenger receptor cysteine rich domain (SRCR1) of gp340 has been shown to inhibit HIV-1 infection through binding to the N-terminal flank of the V3 loop of HIV-1 gp120. RESULTS: Through homology modeling and docking analysis of SRCR1 to a gp120-CD4-X5 antibody complex, we identified three loop regions containing polar or acidic residues that directly interacted with gp120. To confirm the docking prediction, a series of over-lapping peptides covering the SRCR1 sequence were synthesized and analyzed by gp120-peptide binding assay. Five peptides coincide with three loop regions showed the relative high binding index. An alanine substitution scan revealed that Asp34, Asp35, Asn96 and Glu101 in two peptides with the highest binding index are the critical residues in SRCR1 interaction with gp120. CONCLUSION: We pinpointed the vital gp120-binding regions in SRCR1 and narrowed down the amino acids which play critical roles in contacting with gp120.


Assuntos
Proteína gp120 do Envelope de HIV/química , HIV-1/metabolismo , Receptores de Superfície Celular/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor
16.
Appl Microbiol Biotechnol ; 97(10): 4393-401, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22868826

RESUMO

The PNP/6-methylpurine 2'-deoxyriboside (6MePdR) system is an efficient gene-directed enzyme prodrug therapy system with significant antitumor activities. In this system, Escherichia coli purine nucleoside phosphorylase (ePNP) activates nontoxic 6MePdR into potent antitumor drug 6-methylpurine (6MeP). The Salmonella typhimurium PNP (sPNP) gene has a 96-% sequence homology in comparison with ePNP and also has the ability to convert 6MePdR to 6MeP. In this study, we used tumor-targeting S. typhimurium VNP20009 expressing endogenous PNP gene constitutively to activate 6MePdR and a combination treatment of bacteria and prodrug in B16F10 melanoma model. The conversion of 6MePdR to 6MeP by S. typhimurium was analyzed by HPLC and the enzyme activity of sPNP was confirmed by in vitro (tetrazolium-based colorimetric assay) MTT cytotoxicity assay. After systemic administration of VNP20009 to mice, the bacteria largely accumulated and specifically delivered endogenous sPNP in the tumor. In comparison with VNP20009 or 6MePdR treatment alone, combined administration of VNP20009 followed by 6MePdR treatment significantly delayed the growth of B16F10 tumor and increased the CD8(+) T-cell infiltration. In summary, our results demonstrated that the combination therapy of S. typhimurium and prodrug 6MePdR is a promising strategy for cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma Experimental/terapia , Pró-Fármacos/uso terapêutico , Nucleosídeos de Purina/uso terapêutico , Salmonella typhimurium/fisiologia , Sequência de Aminoácidos , Animais , Apoptose , Cromatografia Líquida de Alta Pressão , Feminino , Marcação In Situ das Extremidades Cortadas , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Purina-Núcleosídeo Fosforilase/química , Homologia de Sequência de Aminoácidos
17.
Biosci Biotechnol Biochem ; 77(6): 1251-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23748768

RESUMO

The bar-headed goose, a specialized high-altitude species, has a capacity for high oxygen uptake from a hypoxic environment. It thus has a higher oxygen affinity than other bird species of lower-altitude environments. Oxygen affinity is determined by molecular structures and genetic mutations of hemoglobin (Hb), which can also influence the coordinating structures and dynamics of oxygen-Hb. To explore the structural differences in Hbs as between high and low altitude species, photolysis dynamic parameters, including quantum yield, enthalpy, and conformational volume changes in carboxy-Hbs (HbCO) for the bar-headed goose and low altitude counterparts (the Chinese goose and chicken) were investigated by the laser pumping-probing technique and photoacoustic calorimetry. Comparing the photolysis results for HbCO of the three species, the enthalpy and conformational volume changes of the bar-headed goose were much smaller than those of the others, although the quantum yields of all three species are similar. To explain the possible mechanisms of these differences, modifications of salt bridges and key residue mutations at the α ß subunit interfaces of the proteins are described and discussed briefly.


Assuntos
Altitude , Gansos/fisiologia , Hemoglobinas/metabolismo , Consumo de Oxigênio , Animais , Gansos/genética , Hemoglobinas/química , Lasers , Fotólise , Especificidade da Espécie , Termodinâmica , Ultrassom/métodos
18.
Metallomics ; 15(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37061789

RESUMO

Zinc homeostasis is regulated by the SLC39A/ZIP, SLC30A/ZnT, and metallothionein (MT) protein families. The association of zinc homeostasis with acute myeloid leukemia (AML) is unclear. We previously demonstrated that zinc depletion by TPEN triggers apoptosis in NB4 AML cells with the degradation of PML-RARα oncoprotein, suggesting that zinc homeostasis may be associated with AML. The primary aim of this study was to explore the expression pattern and prognostic roles of zinc homeostasis-related genes in AML. Bioinformatics analyses were performed using integrated datasets from the TCGA and GTEx projects. The GEPIA tool was used to analyze the differential expression of zinc homeostasis-related genes. Correlations between zinc homeostasis-related genes were assessed with Spearman's correlation coefficient. OncoLnc was used to evaluate the prognostic roles of zinc homeostasis-related genes with Kaplan-Meier and Cox regression models. In both NB4 and U937 cells, the transcriptional regulation of zinc homeostasis-related genes by zinc depletion was detected through qPCR. We found that multiple ZIPs, ZnTs, and MTs were differentially expressed and correlated in AML tumors. In AML patients, higher expression of ZIP4 and lower expression of ZnT5 and ZnT7 predicted poorer survival. We further found that zinc depletion by TPEN upregulated ZIP7, ZIP9, ZIP10, ZIP13, and ZnT7 and downregulated ZIP14, ZnT1, ZnT6, and most of the positively expressed MTs in both NB4 and U937 AML cells. Our findings suggest high expression of ZIP4 and low expression of ZnT5 and ZnT7 as potential risk factors for the prognosis of AML. Zinc homeostasis may be a potential therapeutic target for AML, deserving further exploration.


Assuntos
Proteínas de Transporte de Cátions , Leucemia Mieloide Aguda , Humanos , Prognóstico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Zinco/metabolismo , Retículo Endoplasmático/metabolismo , Leucemia Mieloide Aguda/genética , Homeostase/genética
19.
NPJ Precis Oncol ; 7(1): 28, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922568

RESUMO

Genomic studies have demonstrated a high frequency of genetic alterations in components of the SWI/SNF complex including the core subunit SMARCA4. However, the mechanisms of tumorigenesis driven by SMARCA4 mutations, particularly in colorectal cancer (CRC), remain largely unknown. In this study, we identified a specific, hotspot mutation in SMARCA4 (c. 3721C>T) which results in a conversion from arginine to tryptophan at residue 1157 (R1157W) in human CRC tissues associated with higher-grade tumors and controls CRC progression. Mechanistically, we found that the SMARCA4R1157W mutation facilitated its recruitment to PRMT1-mediated H4R3me2a (asymmetric dimethylation of Arg 3 in histone H4) and enhanced the ATPase activity of SWI/SNF complex to remodel chromatin in CRC cells. We further showed that the SMARCA4R1157W mutant reinforced the transcriptional expression of EGFR and TNS4 to promote the proliferation of CRC cells and patient-derived tumor organoids. Importantly, we demonstrated that SMARCA4R1157W CRC cells and mutant cell-derived xenografts were more sensitive to the combined inhibition of PRMT1 and SMARCA4 which act synergistically to suppress cell proliferation. Together, our findings show that SMARCA4-R1157W is a critical activating mutation, which accelerates CRC progression through facilitating chromatin recruitment and remodeling. Our results suggest a potential precision therapeutic strategy for the treatment of CRC patients carrying the SMARCA4R1157W mutation.

20.
Cancer Sci ; 103(2): 325-33, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22054098

RESUMO

Attenuated Salmonella typhimurium (S. typhimurium) strains can selectively grow and express exogenous genes in tumors for targeted therapy. We engineered S. typhimurium strain VNP20009 to secrete tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) under the control of a hypoxia-induced nirB promoter and examined the efficacy of Salmonella-mediated targeted expression of TRAIL in mice bearing melanoma tumor and in TRAIL-resistant RM-1 tumor. We found that VNP preferentially accumulated in tumor tissues and the nirB promoter effectively drove targeted expression of TRAIL. Compared with recombinant TRAIL protein and VNP20009 combination therapy, VNP20009 expressing TRAIL significantly suppressed melanoma growth but failed to suppress RM-1 tumor growth. Furthermore, we confirmed that VNP20009 expressing TRAIL yielded its antitumor effect by inducing melanoma apoptosis. Our findings indicate that Salmonella-mediated tumor-targeted therapy with TRAIL could reduce tumor growth and extend host survival.


Assuntos
Terapia Genética , Melanoma Experimental/terapia , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA