Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(47): e2203536, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36229405

RESUMO

The interface of perovskite solar cells (PSCs) plays a significant role in influencing their performance, yet there is still scarce research focusing on their difficult-to-expose bottom interfaces. Herein, ethylammonium bromide (EABr) is introduced into the bottom interface and its passivation effects are studied directly. First, EABr can improve substrate wettability, which is beneficial for the perovskite-film deposition. By lifting off the perovskite film spontaneously from the substrate, it is found that EABr can significantly reduce the amount of unreacted PbI2 at the bottom interface. These PbI2 crystals have been recently identified as a major defect source and degradation site for perovskite film. Meanwhile, EABr also lifts the valence band maximum at the bottom side of perovskite from -5.38 to -5.09 eV, facilitating better hole transfer. Such a improvement is also verified by the study of charge carrier dynamics. Through introducing EABr, all photovoltaic parameters of the inverted PSCs are improved, and their power conversion efficiency (PCE) increases from 20.41% to 21.06%. The study highlights the importance of direct characterization of the bottom interface for a better passivation effect.

2.
Small ; 17(43): e2101359, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34121319

RESUMO

Colloidal all-inorganic perovskites nanocrystals (NCs) have emerged as a promising material for display and lighting due to their excellent optical properties. However, blue emissive NCs usually suffer from low photoluminescence quantum yields (PLQYs) and poor stability, rendering them the bottleneck for full-color all-perovskite optoelectronic applications. Herein, a facile approach is reported to enhance the emission efficiency and stability of blue emissive perovskite nano-structures via surface passivation with potassium bromide. By adding potassium oleate and excess PbBr2 to the perovskite precursor solutions, potassium bromide-passivated (KBr-passivated) blue-emitting (≈450 nm) CsPbBr3 nanoplatelets (NPLs) is successfully synthesized with a respectably high PLQY of 87%. In sharp contrast to most reported perovskite NPLs, no shifting in emission wavelength is observed in these passivated NPLs even after prolonged exposures to intense irradiations and elevated temperature, clearly revealing their excellent photo- and thermal-stabilities. The enhancements are attributed to the formation of K-Br bonding on the surface which suppresses ion migration and formation of Br-vacancies, thus improving both the PL emission and stability of CsPbBr3 NPLs. Furthermore, all-perovskite white light-emitting diodes (WLEDs) are successfully constructed, suggesting that the proposed KBr-passivated strategy can promote the development of the perovskite family for a wider range of optoelectronic applications.

3.
J Sci Food Agric ; 98(9): 3315-3323, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29239490

RESUMO

BACKGROUND: Heat stress (HS) has an adverse effect on meat quality; however, the underlying molecular mechanisms altering meat quality due to muscle responses to stress remain unclear. Sixteen castrated male crossbreeds between Landrace × Yorkshire sows and Duroc boars (79.00 ± 1.50 kg body weight) were exposed to either thermal neutral (22 °C, n = 8) or HS (30 °C, n = 8) conditions for 3 weeks. Subsequently, the longissimus dorsi (LD) muscle of all pigs was assayed for meat quality parameters and proteome analysis. RESULTS: HS decreased post mortem (24 h) pH and intramuscular fat, changed ultimate L*, a* and b* values and increased drip loss and shear force. Proteome analysis of the LD was conducted by two-dimensional gel electrophoresis and mass spectrometry. A total of 23 differentially expressed proteins were identified, of which three were verified by western blotting analysis. The identified proteins were involved in six types of biological process: carbohydrate metabolism, myofibrillar and cytoskeleton structure, stress response, antioxidant and detoxification, calcium binding and cellular apoptosis. Interestingly, HS induced higher levels of heat shock protein, antioxidants and calcium binding proteins, which are involved in the mechanisms of defense and homeostasis. CONCLUSION: The results indicate that HS-induced changes in the expression of myofibrillar proteins, glucose and energy metabolism-related proteins, heat shock protein and antioxidant enzymes might, at least partly, contribute to increase in meat tenderness. These findings will provide the foundation for developing future mitigating solutions and preventative therapies to reduce the detrimental effects of chronic HS on muscle function, metabolism and meat quality. © 2017 Society of Chemical Industry.


Assuntos
Temperatura Alta/efeitos adversos , Carne , Proteínas Musculares/análise , Músculo Esquelético/química , Proteômica , Sus scrofa , Tecido Adiposo , Animais , Antioxidantes/análise , Composição Corporal , Metabolismo Energético , Qualidade dos Alimentos , Glucose/metabolismo , Proteínas de Choque Térmico/análise , Concentração de Íons de Hidrogênio , Masculino , Miofibrilas/química , Orquiectomia , Proteômica/métodos
4.
Int J Mol Sci ; 17(5)2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27187351

RESUMO

Heat stress (HS) negatively affects human health, animal welfare, and livestock production. We analyzed the hepatic proteomes of finishing pigs subjected to chronic heat stress (HS), thermal neutral (TN), and restricted feed intake conditions, identifying differences between direct and indirect (via reduced feed intake) HS. Twenty-four castrated male pigs were randomly allocated to three treatments for three weeks: (1) thermal neutral (TN) (22 °C) with ad libitum feeding; (2) chronic HS (30 °C) with ad libitum feeding; and (3) TN, pair-fed to HS intake (PF). Hepatic proteome analysis was conducted using two-dimensional gel electrophoresis and mass spectrometry. Both HS and PF significantly reduced liver weight (p < 0.05). Forty-five hepatic proteins were differentially abundant when comparing HS with TN (37), PF with TN (29), and HS with PF (16). These proteins are involved in heat shock response and immune defense, oxidative stress response, cellular apoptosis, metabolism, signal transduction, and cytoskeleton. We also observed increased abundance of proteins and enzymes associated with heat shock response and immune defense, reduced the redox state, enhanced multiple antioxidant abilities, and increased apoptosis in HS liver. Heat-load, independent of reduced feed intake, induced an innate immune response, while food restriction caused stress and cellular apoptosis. Our results provide novel insights into the effects of chronic HS on liver.


Assuntos
Apoptose , Resposta ao Choque Térmico , Fígado/metabolismo , Estresse Oxidativo , Proteoma/metabolismo , Animais , Fígado/imunologia , Masculino , Proteoma/genética , Suínos
5.
Nanomaterials (Basel) ; 13(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446498

RESUMO

Metal halide perovskite materials have demonstrated significant potential in various optoelectronic applications, such as photovoltaics, light emitting diodes, photodetectors, and lasers. However, the stability issues of perovskite materials continue to impede their widespread use. Many studies have attempted to understand the complex degradation mechanism and dynamics of these materials. Among them, in situ and/or operando approaches have provided remarkable insights into the degradation process by enabling precise control of degradation parameters and real-time monitoring. In this review, we focus on these studies utilizing in situ and operando approaches and demonstrate how these techniques have contributed to reveal degradation details, including structural, compositional, morphological, and other changes. We explore why these two approaches are necessary in the study of perovskite degradation and how they can be achieved by upgrading the corresponding ex situ techniques. With recent stability improvements of halide perovskite using various methods (compositional engineering, surface engineering, and structural engineering), the degradation of halide perovskite materials is greatly retarded. However, these improvements may turn into new challenges during the investigation into the retarded degradation process. Therefore, we also highlight the importance of enhancing the sensitivity and probing range of current in situ and operando approaches to address this issue. Finally, we identify the challenges and future directions of in situ and operando approaches in the stability research of halide perovskites. We believe that the advancement of in situ and operando techniques will be crucial in supporting the journey toward enhanced perovskite stability.

6.
ACS Nano ; 17(18): 18253-18265, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37669410

RESUMO

Defects are generally considered to be effective and flexible in the catalytic reactions of lithium-sulfur batteries. However, the influence of the defect concentration on catalysis remains ambiguous. In this work, molybdenum sulfide with different sulfur vacancy concentrations is comprehensively modulated, showing that the defect level and the adsorption-catalytic performance result in a volcano relationship. Moreover, density functional theory and in situ experiments reveal that the optimal level of sulfur defects can effectively increase the binding energy between molybdenum sulfide and lithium polysulfides (LiPSs), lower the energy barrier of the LiPS conversion reaction, and promote the kinetics of Li2S bidirectional catalytic reaction. The lower bidirectional catalytic performance incited by excessive or deficient sulfur defects is mainly due to the deformed geometrical structures and reduced adsorption of key LiPSs on the catalyst surface. This work underscores the imperative of controlling the defect content and provides a potential approach to the commercialization of lithium-sulfur batteries.

7.
Mater Horiz ; 10(9): 3680-3693, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37365987

RESUMO

Aqueous zinc-ion batteries (ZIBs) are promising candidates for next-generation energy storage systems due to their intrinsic safety, environmental friendliness, and low cost. However, the uncontrollable Zn dendrite growth during cycling is still a critical challenge for the long-term operation of ZIBs, especially under harsh lean-Zn conditions. Herein, we report nitrogen and sulfur-codoped carbon quantum dots (N,S-CDs) as zincophilic electrolyte additives to regulate the Zn deposition behaviors. The N,S-CDs with abundant electronegative groups can attract Zn2+ ions and co-deposit with Zn2+ ions on the anode surface, inducing a parallel orientation of the (002) crystal plane. The deposition of Zn preferentially along the (002) crystal direction fundamentally avoids the formation of Zn dendrites. Moreover, the co-depositing/stripping feature of N,S-CDs under an electric field force ensures the reproducible and long-lasting modulation of the Zn anode stability. Benefiting from these two unique modulation mechanisms, stable cyclability of the thin Zn anodes (10 and 20 µm) at a high depth of discharge (DOD) of 67% and high Zn||Na2V6O16·3H2O (NVO, 11.52 mg cm-2) full-cell energy density (144.98 W h Kg-1) at a record-low negative/positive (N/P) capacity ratio of 1.05 are achieved using the N,S-CDs as an additive in ZnSO4 electrolyte. Our findings not only offer a feasible solution for developing actual high-energy density ZIBs but also provide in-depth insights into the working mechanism of CDs in regulating Zn deposition behaviors.

8.
ACS Nano ; 16(8): 13199-13210, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35938940

RESUMO

Aqueous electrochromic battery (ECB) is a multifunctional technology that shows great potential in various applications including energy-saving buildings and wearable batteries with visible energy levels. However, owing to the mismatch between traditional electrochromic materials and the electrolyte, aqueous ECBs generally exhibit poor cycling stability which bottlenecks their practical commercialization. Herein, we present an ultrastable electrochromic system composed of lithium titanate (Li4Ti5O12, LTO) electrode and Al3+/Zn2+ hybrid electrolyte. The fully compatible system exhibits excellent redox reaction reversibility, thus leading to extremely high cycling stabilities in optical contrast (12 500 cycles with unnoticeable degradation) and energy storage (4000 cycles with 82.6% retention of capacity), superior electrochromic performances including high optical contrast (∼74.73%) and fast responses (4.35 s/7.65 s for bleaching/coloring), as well as excellent discharge areal capacity of 151.94 mAh m-2. The extraordinary cycling stability can be attributed to the robust [TiO6] octahedral frameworks which remain chemically active even upon the gradual substitution of Li+ with Al3+ in LTO over multiple operation cycles. The high-performance electrochromic system demonstrated here not only makes the commercialization of low-cost, high-safety aqueous-based electrochromic devices possible but also provides potential design guidance for LTO-related materials used in aqueous-based energy storage devices.

9.
Adv Mater ; 33(38): e2102816, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338381

RESUMO

With potential commercial applications, inverted perovskite solar cells (PSCs) have received wide-spread attentions as they are compatible with tandem devices and processed at low-temperature. Nevertheless, their efficiencies remain unsatisfactory due to insufficient film quality on hydrophobic hole transport layer and limited hole-blocking capability of the electron transport layer. Herein, 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), an n-type semiconductor, is incorporated into the antisolvent to simultaneously regulate the grain growth and charge transport of perovskite films. TPBi facilitates the crystallization of perovskites along (100) orientation. Besides, TPBi is mainly distributed near the top surface of perovskite film and enhances the hole-blocking capability of the area adjacent to the surface. The superior properties of this film lead to a remarkable improvement in the open-circuit voltage of inverted PSCs. The champion device achieves a high power conversion efficiency of 21.79% while keeping ≈92% of its initial value after 1000 h storage in the ambient atmosphere. This work provides an effective way to evidently promote the performance of inverted PSCs and illustrates its underlaying mechanism.

10.
J Phys Chem Lett ; 12(19): 4530-4536, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33961442

RESUMO

Aggregation-induced luminescence quenching of carbon nanodots (CDs) is the main obstacle for their applications in solid-state light emitting devices. Herein, we developed a one-step synthesis of solid-state emissive CDs with surface aluminum-based polymerization by adding AlCl3 in citric acid and urea via a microwave-heating dehydration process. Due to the strong coordination ability of Al ions with N and O atoms, considerable steric hindrance of Al-based cross-linked polymerization was introduced on the surface of the CDs, which not only avoided aggregation of the green emissive carbon cores but also facilitated efficient energy transfer from the blue emissive polymerized surface to the green emissive carbon cores in aggregates, leading to enhanced green emissions with a photoluminescence quantum yield (PLQY) of 72.7% in the solid state.

11.
ACS Appl Mater Interfaces ; 13(47): 56630-56637, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794311

RESUMO

Interfacial quality of functional layers plays an important role in the carrier transport of sandwich-structured devices. Although the suppression of interface states is crucial to the overall device performance, our understanding on their formation and annihilation mechanism via direct characterization is still quite limited. Here, we present a thorough study on the interface states present in the electron transport layer (ETL) of blue quantum dot (QD) light-emitting diodes (QLEDs). A ZnO/ZnMgO bilayer ETL is adopted to enhance the electron injection into blue QDs. By probing the ETL band structure with photoelectron spectroscopy, we discover that substantial band bending exists at the ZnO/ZnMgO interface, elucidating the presence of a high density of interface states which hinder electron transport. By inserting a ZnO@ZMO interlayer composed of mixed ZnO and ZnMgO nanoparticles, the band bending and thus the interface states are observed to reduce significantly. We attribute this to the hybrid surface properties of ZnO@ZMO, which can annihilate the surface states of both the ZnO and ZnMgO layers. The introduction of a bridging layer has led to ∼40% enhancement in the power efficiency of blue QLEDs and noticeable performance boosts in green and red QLEDs. The findings here demonstrate a direct observation of interface states via detailed band structure studies and outline a potential pathway for eliminating these states for better performances in sandwich-structured devices.

12.
Biomed Res Int ; 2018: 1571406, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30112361

RESUMO

AIM: To evaluate the role of heat shock protein 70 (HSP70) on the MAPK pathway activation with quercetin treatment and its protection against small intestine impairments of heat stressed rats. METHODS: Forty-eight male Sprague-Dawley rats aged 6 weeks were randomized to three groups (n=16/group), namely, control (CON), heat stress (HS), and heat stress + quercetin (HQ). The experiment lasted for 14 days with daily 50 min of heat stress treatment (43°C) for the HS and HQ groups. Rats of HQ group were intragastrically given 0.5 ml quercetin solution (50 mg/kg body weight) before the heat stress treatment. Half of the animals were sacrificed on day 7 and the rest on day 14 for tissue sampling. Intestinal morphology, small intestine morphology and permeability, protein expression of HSP70, phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and caspase-3 activity were examined. RESULTS: Heat stress caused morphological damage to the small intestine and increased intestinal permeability. HSP70 expression and MAPK activity in the small intestine were increased by heat stress. Inhibition of HSP70 by quercetin did not change intestinal permeability compared with the HS group but aggravated intestinal injury and affected the activation of MAPKs and caspase-3. CONCLUSIONS: HSP70 may modulate stress-activated signaling and acts in a protective manner via MAPK signaling. Affecting HSP70 protective mechanisms could be useful for protection against heat stress-induced injury in rat small intestine.


Assuntos
Proteínas de Choque Térmico HSP70/fisiologia , Resposta ao Choque Térmico , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , China , Intestino Delgado , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley
13.
Physiol Rep ; 4(15)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27511984

RESUMO

The study aims to characterize age-associated changes in skeletal muscle bioenergetics by evaluating the response to ischemia-reperfusion in the skeletal muscle of the Goto-Kakizaki (GK) rats, a rat model of non-obese type 2 diabetes (T2D). (31)P magnetic resonance spectroscopy (MRS) and blood oxygen level-dependent (BOLD) MRI was performed on the hindlimb of young (12 weeks) and adult (20 weeks) GK and Wistar (control) rats. (31)P-MRS and BOLD-MRI data were acquired continuously during an ischemia and reperfusion protocol to quantify changes in phosphate metabolites and muscle oxygenation. The time constant of phosphocreatine recovery, an index of mitochondrial oxidative capacity, was not statistically different between GK rats (60.8 ± 13.9 sec in young group, 83.7 ± 13.0 sec in adult group) and their age-matched controls (62.4 ± 11.6 sec in young group, 77.5 ± 7.1 sec in adult group). During ischemia, baseline-normalized BOLD-MRI signal was significantly lower in GK rats than in their age-matched controls. These results suggest that insulin resistance leads to alterations in tissue metabolism without impaired mitochondrial oxidative capacity in GK rats.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Mitocôndrias/metabolismo , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Animais , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Masculino , Fosfocreatina/metabolismo , Radioisótopos de Fósforo , Ratos , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA