Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895308

RESUMO

BACKGROUND: While the amygdala receives early tau deposition in Alzheimer's disease (AD) and is involved in social and emotional processing, the relationship between amygdalar tau and early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical AD cohort and identify relationships between these and self-reported mood symptoms. METHODS: We examined n=598 individuals (n=347 amyloid-positive (58% female), n=251 amyloid-negative (62% female); subset into tau PET and fMRI cohorts) from the A4 Study. In our tau PET cohort, we used amygdalar segmentations to examine representative nuclei from three functional divisions of the amygdala. We analyzed between-group differences in division-specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional connectivity analyses from each division in the fMRI cohort. Finally, we conducted exploratory post-hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and depression scores. RESULTS: Amyloid-positive individuals demonstrated increased tau binding in medial and lateral amygdala (F(4,442)=14.61, p=0.00045; F(4,442)=5.83, p=0.024, respectively). Across amygdalar divisions, amyloid-positive individuals had relatively increased regional connectivity from amygdala to other temporal regions, insula, and orbitofrontal cortex. There was an interaction by amyloid group between tau binding in the medial and lateral amygdala and anxiety. Medial amygdala to retrosplenial connectivity negatively correlated with anxiety symptoms (rs=-0.103, p=0.015). CONCLUSIONS: Our findings suggest that preclinical tau deposition in the amygdala may result in meaningful changes in functional connectivity which may predispose patients to mood symptoms.

2.
J Cell Biochem ; 100(3): 642-52, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16983699

RESUMO

Here, we report the use of an in vivo protein-protein interaction detection approach together with focused follow-up experiments to study the function of the DeaD protein in Escherichia coli. In this method, functions are assigned to proteins based on the interactions they make with others in the living cell. The assigned functions are further confirmed using follow-up experiments. The DeaD protein has been characterized in vitro as a putative prokaryotic factor required for the formation of translation initiation complexes on structured mRNAs. Although the RNA helicase activity of DeaD has been demonstrated in vitro, its in vivo activity remains controversial. Here, using a method called sequential peptide affinity (SPA) tagging, we show that DeaD interacts with certain ribosomal proteins as well as a series of other nucleic acid binding proteins. Focused follow-up experiments provide evidence for the mRNA helicase activity of the DeaD protein complex during translation initiation. DeaD overexpression compensates for the reduction of the translation activity caused by a structure placed at the initiation region of a chloramphenicol acetyltransferase gene (cat) used as a reporter. Deletion of the deaD gene, encoding DeaD, abolishes the translation activity of the mRNA with an inhibitory structure at its initiation region. Increasing the growth temperature disrupts RNA secondary structures and bypasses the DeaD requirement. These observations suggest that DeaD is involved in destabilizing mRNA structures during translation initiation. This study also provides further confirmation that large-scale protein-protein interaction data can be suitable to study protein functions in E. coli.


Assuntos
Cloranfenicol O-Acetiltransferase/genética , RNA Helicases DEAD-box/fisiologia , Proteínas de Escherichia coli/fisiologia , Biossíntese de Proteínas , RNA Mensageiro/genética , Sequência de Bases , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , RNA Mensageiro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA