RESUMO
BACKGROUND: To investigate the relation between serum leptin levels and cerebral infarction (CI) by meta-analysis. MATERIALS AND METHODS: Scientific literature databases were searched for studies published in Chinese and English. After retrieving relevant articles through database searches and screening using predefined selection criteria, high-quality studies related to our research topic were selected for inclusion in this meta-analysis. All statistical analyses were conducted using Comprehensive Meta-Analysis 2.0 (CMA 2.0, Biostat Inc., Englewood, New Jersey, USA). RESULTS: The study results revealed that serum leptin levels were significantly higher in CI patients as compared to normal controls. The outcomes of subgroup analysis by ethnicity suggested that the serum leptin levels in CI patients were significantly higher than normal controls in both Asian and Caucasian populations. Further, subgroup analysis based on the detection method indicated that the serum leptin levels in CI patients were significantly higher compared with normal controls when measured by radioimmunoassay (RIA) but enzyme-linked immunosorbent assay (ELISA)-based measurements did not show such statistically significant differences. CONCLUSION: Our meta-analysis results suggest that serum leptin levels in CI patients may be closely correlated with CI risks.
RESUMO
OBJECTIVES: Investigating the efficacy and safety of noninvasive cerebellar stimulation in improving the balance and walking function of patients with stroke. METHODS: We searched 7 databases for randomized controlled trials (RCTs) related to noninvasive cerebellar stimulation in the treatment of stroke. The Berg Balance Scale (BBS), 6-minute walk test (6MWT), and Barthel Index (BI) were used as the outcome indexes to evaluate balance, walking and activities of daily living (ADL). The quality of the research was evaluated using the Cochrane Risk of Bias Tool. A meta-analysis was performed to evaluate the difference between the noninvasive cerebellar stimulation and control groups. Heterogeneity tests were performed to assess differences in treatment effects across noninvasive cerebellar stimulation modalities. A sensitivity analysis was performed to evaluate the robustness of the results. RESULTS: Seven studies were included, and 5 articles (71.43%) were rated as having a low risk of bias. Among the primary outcome indicators, 4 of the 7 articles were combined into the fixed effect model (I2 = 38%, P = .18). Compared with the control group, noninvasive cerebellar stimulation improved the BBS score, and the difference was statistically significant (mean difference [MD]: 3.00, 95% confidence interval [CI]: 1.10-5.40, P = .03); the sensitivity analysis showed that the statistical model was still stable after sequentially eliminating each article. Compared with the control group, noninvasive cerebellar stimulation improved the 6MWT results of patients with stroke (MD: 25.29, 95% CI: 4.86-45.73, P = .02). However, noninvasive cerebellar stimulation did not improve the BI (MD: 15.61, 95% CI: -7.91 to 39.13, P = .19). No safety problems or adverse reactions to noninvasive cerebellar stimulation were observed. CONCLUSIONS: Noninvasive cerebellar stimulation improves balance and walking function of patients with stroke, but its effect on ADL is uncertain. Due to the methodological weaknesses in the included trials, more RCTs are needed to confirm our conclusions.