Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Small ; 20(31): e2310431, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38441366

RESUMO

Innovative advances in the exploitation of effective electrocatalytic materials for the reduction of nitrogen (N2) to ammonia (NH3) are highly required for the sustainable production of fertilizers and zero-carbon emission fuel. In order to achieve zero-carbon footprints and renewable NH3 production, electrochemical N2 reduction reaction (NRR) provides a favorable energy-saving alternative but it requires more active, efficient, and selective catalysts. In current work, sulfur vacancy (Sv)-rich NiCo2S4@MnO2 heterostructures are efficaciously fabricated via a facile hydrothermal approach followed by heat treatment. The urchin-like Sv-NiCo2S4@MnO2 heterostructures serve as cathodes, which demonstrate an optimal NH3 yield of 57.31 µg h-1 mgcat -1 and Faradaic efficiency of 20.55% at -0.2 V versus reversible hydrogen electrode (RHE) in basic electrolyte owing to the synergistic interactions between Sv-NiCo2S4 and MnO2. Density functional theory (DFT) simulation further verifies that Co-sites of urchin-like Sv-NiCo2S4@MnO2 heterostructures are beneficial to lowering the energy threshold for N2 adsorption and successive protonation. Distinctive micro/nano-architectures exhibit high NRR electrocatalytic activities that might motivate researchers to explore and concentrate on the development of heterostructures for ambient electrocatalytic NH3 generation.

2.
EMBO Rep ; 23(2): e53499, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34882936

RESUMO

The activation of the nucleotide oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is related to the pathogenesis of a wide range of inflammatory diseases, but drugs targeting the NLRP3 inflammasome are still scarce. In the present study, we demonstrated that Licochalcone B (LicoB), a main component of the traditional medicinal herb licorice, is a specific inhibitor of the NLRP3 inflammasome. LicoB inhibits the activation of the NLRP3 inflammasome in macrophages but has no effect on the activation of AIM2 or NLRC4 inflammasome. Mechanistically, LicoB directly binds to NEK7 and inhibits the interaction between NLRP3 and NEK7, thus suppressing NLRP3 inflammasome activation. Furthermore, LicoB exhibits protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including lipopolysaccharide (LPS)-induced septic shock, MSU-induced peritonitis and non-alcoholic steatohepatitis (NASH). Our findings indicate that LicoB is a specific NLRP3 inhibitor and a promising candidate for treating NLRP3 inflammasome-related diseases.


Assuntos
Chalconas , Inflamassomos , Animais , Chalconas/farmacologia , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR
3.
Pharm Biol ; 60(1): 525-534, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35253576

RESUMO

CONTEXT: Keguan-1 (KG-1) plays a vital role in enhancing the curative effects, improving quality of life, and reducing the development of acute lung injury (ALI). OBJECTIVE: To unravel the protective effect and underlying mechanism of KG-1 against ALI. MATERIALS AND METHODS: C57BL/6J mice were intratracheally instilled with lipopolysaccharide to establish the ALI model. Then, mice in the KG-1 group received a dose of 5.04 g/kg for 12 h. The levels of proinflammatory cytokines, chemokines, and pathological characteristics were determined to explore the effects of KG-1. Next, untargeted metabolomics was used to identify the differential metabolites and involved pathways for KG-1 anti-ALI. Network pharmacology was carried out to predict the putative active components and drug targets of KG-1 anti-ALI. RESULTS: KG-1 significantly improved the levels of TNF-α (from 2295.92 ± 529.87 pg/mL to 1167.64 ± 318.91 pg/mL), IL-6 (from 4688.80 ± 481.68 pg/mL to 3604.43 ± 382.00 pg/mL), CXCL1 (from 4361.76 ± 505.73 pg/mL to 2981.04 ± 526.18 pg/mL), CXCL2 (from 5034.09 ± 809.28 pg/mL to 2980.30 ± 747.63 pg/mL), and impaired lung histological damage. Untargeted metabolomics revealed that KG-1 significantly regulated 12 different metabolites, which mainly related to lipid, amino acid, and vitamin metabolism. Network pharmacology showed that KG-1 exhibited anti-ALI effects through 17 potentially active components acting on seven putative drug targets to regulate four metabolites. DISCUSSION AND CONCLUSIONS: This work elucidated the therapeutic effect and underlying mechanism by which KG-1 protects against ALI from the view of the metabolome, thus providing a scientific basis for the usage of KG-1.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Farmacologia em Rede
4.
Chem Rec ; 21(4): 841-857, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33656241

RESUMO

The rapid development of radical chemistry has spurred several innovative strategies for organic synthesis. The novel approaches for organic synthesis play a critical role in promoting and regulating the single-electron redox activity. Among them, photoelectrocatalysis (PEC) has attained considerable attention as the most promising strategy to convert organic compounds into fine chemicals. This review highlights the current progress in organic synthesis through PEC, including various catalytic reactions, catalyst systems and practical applications. The numerous catalytic reactions suffer the high overpotential and poor conversion efficiency, depending on the design of electrolyzers and the reaction mechanisms. We also considered the recent developments with special emphasis on scientific problems and efficient solutions, which enhance accessibility to utilize and further develop the photoelectrocatalytic technology for the specific chemical bonds formation and the fabrication of numerous catalytic systems.

5.
Biomed Chromatogr ; 35(9): e5140, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33830528

RESUMO

Owing to the complexity of the composition of herbal and dietary supplements, it is a challenging problem to efficiently screen and identify active or toxic compounds. Psoralea corylifolia L. (PCL) was selected as the subbject to establish a methodology for rapid screening and identification of hepatotoxic compounds. High-content imaging, ultra-performance liquid chromatography and high-resolution mass spectrometry were used in this study to detect the hepatotoxicity and identify unknown compounds in PCL samples. Then, putative toxic compounds which are highly related to hepatotoxicity were screened by spectrum-toxicity correlation analysis, and the toxicity intensity verified by high-content imaging. The maximum nontoxic dose of processed samples with good detoxification effect reduced more than 9 times compared with unprocessed raw medicinal materials. Spectrum-toxicity correlation analysis showed that bavachinin A, bavachin, isobavachalcone and neobavaisoflavone had high correlation with the hepatotoxicity of PCL, and psoralen and isopsoralen had low correlation with hepatotoxicity. This study verified the hepatotoxicity of these six putative compound monomers, proving the results of spectrum-toxicity correlation analysis. Based on the correlation analysis of high-resolution mass spectrometry of detection compounds and high-content imaging of hepatocyte toxicity data, the potential toxic compound of herbal and dietary supplement products can be quickly and accurately screened.


Assuntos
Suplementos Nutricionais/toxicidade , Medicamentos de Ervas Chinesas/toxicidade , Hepatócitos/efeitos dos fármacos , Psoralea/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ficusina/toxicidade , Flavonoides/toxicidade , Humanos , Isoflavonas/toxicidade , Espectrometria de Massas/métodos , Imagem Molecular/métodos
6.
Hepatology ; 70(1): 346-357, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30985007

RESUMO

Polygonum multiflorum (PM) is a well-known Chinese herbal medicine that has been reported to induce inflammation-associated idiosyncratic liver injury. This study aimed to identify the genetic basis of susceptibility to PM-drug-induced liver injury (PM-DILI) and to develop biological markers for predicting the risk of PM-DILI in humans. The major histocompatibility complex (MHC) regions of 11 patients with PM-DILI were sequenced, and all human leukocyte antigen (HLA)-type frequencies were compared to the Han-MHC database. An independent replication study that included 15 patients with PM-DILI, 33 patients with other DILI, and 99 population controls was performed to validate the candidate allele by HLA-B PCR sequence-based typing. A prospective cohort study that included 72 outpatients receiving PM for 4 weeks was designed to determine the influence of the risk allele on PM-DILI. In the pilot study, the frequency of HLA-B*35:01 was 45.4% in PM-DILI patients compared with 2.7% in the Han Chinese population (odds ratio [OR], 30.4; 95% confidence interval [CI], 11.7-77.8; P = 1.9 × 10-10 ). In the independent replication study and combined analyses, a logistic regression model confirmed that HLA-B*35:01 is a high-risk allele of PM-DILI (PM-DILI versus other DILI, OR, 86.5; 95% CI, 14.2-527.8, P = 1.0 × 10-6 ; and PM-DILI versus population controls, OR, 143.9; 95% CI, 30.1-687.5, P = 4.8 × 10-10 ). In the prospective cohort study, an asymptomatic increase in transaminase levels was diagnosed in 6 patients, representing a significantly higher incidence (relative risk, 8.0; 95% CI, 1.9-33.2; P < 0.02) in the HLA-B*35:01 carriers (37.5%) than in the noncarriers (4.7%). Conclusion: The HLA-B*35:01 allele is a genetic risk factor for PM-DILI and a potential biomarker for predicting PM-DILI in humans.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Fallopia multiflora/toxicidade , Antígeno HLA-B35/genética , Adulto , Povo Asiático/genética , Biomarcadores , Medicamentos de Ervas Chinesas/toxicidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Projetos Piloto , Estudos Prospectivos , Adulto Jovem
7.
Pharmacol Res ; 152: 104618, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31891789

RESUMO

Several decades have passed since resveratrol (RSV) was first identified in red wine. Researchers have reported the pleiotropic anti-oxidant, anti-inflammatory, anti-cancer, anti-aging, and neuronal protective effects of resveratrol and its glycosylated derivative. However, few studies have distinguished the minute differences in the properties between resveratrol and its glycosylated derivative in terms of synaptic plasticity. As an abundant natural product of glycosylated resveratrol, the derivative 2,3,4',5-tetrahydroxystilbene-2-O-ß-d-glucoside (TSG) has been determined to be a better option for long-term potentiation (LTP) in the hippocampus under physiological and pathological conditions than resveratrol. TSG, as well as its parent molecule RSV, could elicit early-LTP and recover fast excitatory postsynaptic potentials (EPSPs) in the hippocampus. Using various modalities, including pre- and post-whole-cell patch clamping techniques in the calyx of Held, pharmacological inhibition of the N-methyl-d-aspartic acid receptor (NMDAr) and the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAr) as well as protein kinase C (PKC) activation, we demonstrated that TSG, unlike RSV, could merely promote NMDA-mediated EPSC via PKCß cascade. Our results provide new knowledge that glycosylation of resveratrol could significantly improve its specificity in promoting sole NMDAr mediation of EPSPs, in addition to improving solubility and resistance against oxidation in vivo. These observations could contribute to further exploration of pharmaceutical evaluation of glycosylated stilbene in the future.


Assuntos
Glucosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Quinase C beta/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia
8.
Mol Genet Genomics ; 294(5): 1159-1171, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31053932

RESUMO

Li-Ru-Kang (LRK) has been commonly used in the treatment of hyperplasia of mammary gland (HMG) as a cipher prescription and achieved obvious therapeutic effects. However, the bioactive compounds and underlying pharmacological mechanisms remain unclear. This study aims to decipher the bioactive compounds and potential action mechanisms of LRK in the treatment of HMG using an integrated pharmacology approach. The ingredients of LRK and the corresponding drug targets were retrieved through drug target databases and were used to construct the "compound-target-disease" network and function-pathway network. Ultimately, 89 compounds and 2150 drug targets were collected. Gene ontology enrichment analysis revealed that mammary gland alveolus development and mammary gland lobule development were the key biological processes and were regulated simultaneously by three direct targets, including androgen receptor (AR), estrogen receptor (ER) and cyclin-D1. Moreover, 14 compounds of LRK were directly involved in the regulation of the three aforementioned targets. KEGG pathway enrichment analysis found that five signaling pathways and seven direct targets were closely related with HMG treatment by LRK. The results of animal experiments showed that LRK significantly improved the histopathological status of HMG in rats. Additionally, LRK markedly regulated the protein expressions of AR, cyclin-D1, MMP2, MMP3 and MMP9. But interestingly, the effect of LRK on ER was not obvious. This study demonstrated that LRK exerted its therapeutic efficacy based on multi-components, multi-targets and multi-pathways. This research confirms the advantages of network pharmacology analyses and the necessity for experimental verification.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Hiperplasia/tratamento farmacológico , Glândulas Mamárias Animais/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Feminino , Medicina Tradicional Chinesa/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
9.
J Sep Sci ; 42(12): 2179-2186, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30993887

RESUMO

A simple, sensitive, and efficient supercritical fluid chromatography with tandem mass spectrometry method was established for the determination of nimodipine in beagle plasma. One-step protein precipitation with acetone was used to extract the analytes from the plasma. Nitrendipine was used as the internal standard. The chromatographic separation was achieved on an ACQUITY UPC2 ™ BEH 2-EP column, and a gradient elution program was applied at a flow rate of 1.5 mL/min. The detection was carried out on a triple quadrupole tandem mass spectrometer with an electrospray ionization source operating in positive ion mode. Quantification was performed using multiple reaction monitoring of the transitions of m/z 419.3→301.3 for nimodipine and m/z 361.4→315.2 for nitrendipine. A satisfactory linearity was obtained over the concentration range of 0.5-800 ng/mL (r > 0.996). The intra- and interday precision and accuracy results were <9.1% across the quality control levels. The peak concentration and area under concentration-time curve (0-720 min) values of the test and reference formulations were 279.28 ± 211.46 and 265.13 ± 149.26 ng/mL, 25608.00 ± 17553.65 and 28553.67 ± 20207.92 ng·min/mL, respectively. The validated method was successfully applied to reveal the pharmacokinetic profiles of nimodipine in beagle dogs after oral administration. Moreover, the analytical method could be used for further bioequivalence studies.


Assuntos
Nimodipina/sangue , Administração Oral , Animais , Cromatografia com Fluido Supercrítico , Cães , Ensaios de Triagem em Larga Escala , Nimodipina/administração & dosagem , Nimodipina/farmacocinética , Espectrometria de Massas em Tandem
10.
Acta Pharmacol Sin ; 38(10): 1340-1352, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28649126

RESUMO

The root of Polygonum multiflorum Thunb (PM) has been used in China to treat a variety of diseases, such as constipation, early graying of the hair and hyperlipemia. Recent evidence shows that PM causes idiosyncratic drug-induced liver injury (IDILI) in humans. In this study, we investigated the molecular basis of PM-induced liver injury in a rat model of IDILI based on a non-hepatotoxic dose of LPS. SD rats were orally administered 3 potentially hepatotoxic compounds of PM: cis-stilbene glucoside (cis-SG, 50 mg/kg), trans-SG (50 mg/kg) or emodin (5 mg/kg), followed by injection of LPS (2.8 mg/kg, iv). Serum and liver histology were evaluated 7 h after LPS injection. Among the 3 compounds tested, cis-SG, but not emodin or trans-SG, induced severe liver injury in rats when combined with LPS. The levels of AST and ALT in plasma and inflammatory cytokines in both plasma and liver tissues were markedly elevated. The liver tissues showed increased injury, hepatocyte apoptosis, and macrophage infiltration, and decreased cell proliferation. Microarray analysis revealed a negative correlation between peroxisome proliferator-activated receptor-γ (PPAR-γ) and LPS/cis-SG-induced liver injury. Immunohistochemical staining and RT-PCR results further confirmed that cis-SG significantly inhibited activation of the PPAR-γ pathway in the liver tissues of LPS/cis-SG-treated rats. Pre-treatment with a PPAR-γ agonist pioglitazone (500 g/kg, ig) reversed LPS/cis-SG-induced liver injury, which was associated with inhibiting the nuclear factor kappa B (NF-κB) pathway. These data demonstrate that cis-stilbene glucoside induces immunological idiosyncratic hepatotoxicity through suppressing PPAR-γ in a rat model of IDILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fallopia multiflora/química , Glucosídeos/toxicidade , Estilbenos/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Emodina/farmacologia , Glucosídeos/química , Glucosídeos/isolamento & purificação , Lipopolissacarídeos/administração & dosagem , Masculino , Análise em Microsséries , NF-kappa B/metabolismo , PPAR gama/metabolismo , Pioglitazona , Raízes de Plantas , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Estereoisomerismo , Estilbenos/química , Estilbenos/isolamento & purificação , Tiazolidinedionas/farmacologia
11.
Yao Xue Xue Bao ; 52(1): 80-5, 2017 01.
Artigo em Zh | MEDLINE | ID: mdl-29911779

RESUMO

This study was conducted to investigate the inhibitory effect and the molecular mechanism of deoxyschizandrin on the activity of NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome. Bone marrow-derived macrophages were used to study the effects of deoxyschizandrin on inflammasome activation using inflammasome inducers (ATP and nigericin). Cytotoxic effect was evaluated with CCK-8. The expression of IL-1ß, caspase-1 in the supernatant and the expression of pro-caspase-1, pro-IL-1ß, ASC, NLRP3 in cell was detected by Western blot for the inhibitory effect of deoxyschizandrin (25, 50, 100 and 200 µmol·L(−1)) on the activity of NLRP3 inflammasome. Immunofluorescence was applied to investigate NF-κB (p65) transportation to the nucleus. The results of CCK-8 showed that the optimum concentration of deoxyschizandrin was 6.25­400 µmol·L(−1). Deoxyschizandrin (25, 50, 100, and 200 µmol·L(−1)) could inhibit the activation of NLRP3 inflammasome caused by nigericin and ATP, and inhibit the secretion of IL-1ß, which was associated with inhibiting the cleavage of pro-caspase-1. The results of immunofluorescence and Western blot also suggest that the inhibitory activity of deoxyschizandrin on NLRP3 inflammasome was not dependent on NF-κB pathway and protein expression of NLRP3, ASC, pro-caspase-1 and pro-IL-1ß mediated by NF-κB. Our results confirmed that deoxyschizandrin could suppress the cleavage of pro-caspase-1 and inhibit the activity of NLRP3 inflammasome at 25­200 µmol·L−1 to reduce the inflammation response.This study was conducted to investigate the inhibitory effect and the molecular mechanism of deoxyschizandrin on the activity of NLRP3 (NOD-like receptor family,pyrin domain containing 3) inflammasome.Bone marrow-derived macrophages were used to study the effects of deoxyschizandrin on inflammasome activation using inflammasome inducers (ATP and nigericin). Cytotoxic effect was evaluated with CCK-8.The expression of IL-1ß,caspase-1 in the supernatant and the expression of pro-caspase-1,pro-IL-1ß,ASC,NLRP3 in cell was detected by Western blot for the inhibitory effect of deoxyschizandrin (25, 50, 100 and 200 µmol·L(-1)) on the activity of NLRP3 inflammasome. Immunofluorescence was applied to investigate NF-κB (p65) transportation to the nucleus. The results of CCK-8 showed that the optimum concentration of deoxyschizandrin was 6.25-400 µmol·L(-1). Deoxyschizandrin (25, 50, 100,and 200 µmol·L(-1)) could inhibit the activation of NLRP3 inflammasome caused by nigericin and ATP, and inhibit the secretion of IL-1ß, which was associated with inhibiting the cleavage of pro-caspase-1.The results of immunofluorescence and Western blot also suggest that the inhibitory activity of deoxyschizandrin on NLRP3 inflammasome was not dependent on NF-κB pathway and protein expression of NLRP3,ASC,pro-caspase-1 and pro-IL-1ßmediated by NF-κB. Our results confirmed that deoxyschizandrin could suppress the cleavage of pro-caspase-1 and inhibit the activity of NLRP3 inflammasome at 25-200 µmol·L(-1) to reduce the inflammation response.


Assuntos
Ciclo-Octanos/farmacologia , Inflamassomos/antagonistas & inibidores , Lignanas/farmacologia , Macrófagos/efeitos dos fármacos , Compostos Policíclicos/farmacologia , Caspase 1/metabolismo , Células Cultivadas , Humanos , Inflamação , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Transcrição RelA/metabolismo
13.
J Insect Sci ; 14: 267, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25434041

RESUMO

The reproductive traits of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) were investigated and analyzed by different analytical methods. Simple statistical analysis showed relatively higher mating rates maintained from 21:00 to 2:00, thereafter dropping to a minimum at about 18:00. Mating rates were affected by female and male age. Mating was most likely to take place between females and males that were 1 d old. Correlation and factor analysis indicated that mating delayed females have a relatively lower and unsuccessful mating rate and relatively shorter copulation duration, with lower egg hatchability and fecundity; in addition, the mating delayed male would reduce female's fertility. Delay of mating prolonged life of both males and females. A higher and successful mating rate would cause a higher egg hatchability and fecundity. Canonical correlation analysis showed that mating age and successful copulation of female play a decisive role for her fecundity and longevity, and mating age and mating rates of male play a decisive role for his longevity.


Assuntos
Mariposas/fisiologia , Comportamento Sexual Animal , Animais , Feminino , Longevidade , Masculino , Reprodução
14.
ChemSusChem ; : e202401174, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183181

RESUMO

In response to carbon neutrality, photocatalytic reduction of CO2 has been the subject of growing interest for researchers over the past few years. Multi-carbon products (C2+) with higher energy density and larger market value produced from photocatalytic reduction of CO2 are still very limited owing to the low photocatalytic productivity and poor selectivity of products. This review focuses on the recent progress on photocatalytic reduction of CO2 towards C2+ products from the perspective of performance evaluation and mechanistic understanding. We first provide a systematic description of the entire fundamental procedures of photocatalytic reduction of CO2. An in-depth strategy analysis for improving the selectivity of photocatalytic reduction of CO2 to C2+ products is then addressed. Then the focus was on summarizing the ways to improve C2+ selectivity. The intrinsic mechanisms of photocatalytic reduction of CO2 to C2+ products are summarized in the final. Combining the foundation of photocatalysis with promising catalyst strategies, this review will offer valuable guidance for the development of efficient photocatalytic systems for the synthesis of C2+ products.

15.
Phytomedicine ; 133: 155909, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068762

RESUMO

BACKGROUND: Berberine (BBR), the main active component of Coptis chinensis Franch., has a variety of pharmacological effects, notably anti-inflammatory, which make it a potential treatment for ulcerative colitis (UC). Nevertheless, the specific target and the mode of action of BBR against UC are still unclear. PURPOSE: Here, we aim to identify BBR's anti-inflammatory target and its mode of action in UC treatment. METHODS: The therapeutic effects of BBR and Coptis chinensis Franch. extract were first assessed in UC mice. Then, stable isotope labeling using amino acids in cell culture-activity-based protein profiling (SILAC-ABPP) was applied to identify the anti-inflammatory target proteins of BBR in an inflammation model of RAW264.7 cells stimulated by LPS. Molecular docking, drug affinity responsive target stability (DARTS), molecular dynamics simulation, cellular thermal shift assay (CETSA), and biological layer interference (BLI) measurement were employed to study the interaction between BBR and its targets. Lentiviral transfection was used to knock down the target protein and investigate BBR's anti-inflammatory mechanism. RESULTS: BBR and Coptis chinensis Franch. extracts both significantly alleviated UC in mice. SILAC-ABPP identified IRGM1 as BBR's anti-inflammatory target, with its overexpression reduced by BBR treatment in both RAW264.7 cell inflammation models stimulated by LPS and UC mice. BBR significantly reduced inflammatory cytokines in LPS-induced RAW264.7 cells by blocking the PI3K/AKT/mTOR pathway. Knockdown of IRGM1 weakened BBR's effects on cytokine expression and pathway regulation. CONCLUSION: For the first time, IRGM1 was identified as the direct anti-inflammatory target of BBR. BBR has the potential to inhibit IRGM1 expression in vitro as well as in vivo. The molecular mechanism of BBR's anti-inflammatory activity was inhibiting the PI3K/AKT/mTOR pathway by targeting IRGM1.


Assuntos
Anti-Inflamatórios , Berberina , Colite Ulcerativa , Coptis , Proteínas de Ligação ao GTP , Animais , Camundongos , Berberina/farmacologia , Berberina/química , Colite Ulcerativa/tratamento farmacológico , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Masculino , Proteínas de Ligação ao GTP/metabolismo , Coptis/química , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-akt/metabolismo , Extratos Vegetais/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Lipopolissacarídeos
16.
Cancer Epidemiol ; 88: 102517, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141471

RESUMO

OBJECTIVES: To describe the epidemiological time trends and gender, age and regional differences of gastric cancer in Asia during 1990-2019, and to analyze the association between the human development index (HDI) and the statistical indicators of the burden of disease. METHODS: Describing trends in age-standardized incidence rates (ASIR) and age-standardized mortality rate (ASMR) in Asia from 1990 to 2019 based on GBD-reported population-based surveillance of gastric cancer in Asia. Obtained ASIR, ASMR, and mortality to incidence ratios (MIR) for gastric cancer in different countries in 2019, with association analysis by Kruskal-Wallis nonparametric test. RESULTS: The annual percentage change in ASIR and ASMR in Asia from 1990 to 2019 was - 1.20% and - 1.91%. Male gastric cancer patients have higher ASIR and ASMR than female gastric cancer patients. Decreasing trends in ASIR and ASMR for the total population in five Asian regions. From 1990 to 2019, the average annual change in ASMR was - 2.45%, - 1.43%, - 0.53%, - 0.62%, and - 0.27% for Central Asia, East Asia, high-income Asia-Pacific, South Asia, and Southeast Asia, respectively (p < 0.05). Both incidence and mortality were concentrated in the age groups of 85-89 and 89-94 years. Classifying Asian countries into different levels of HDI, only MIR was associated with HDI levels. CONCLUSION: ASIR and ASMR of gastric cancer in the total population, different regions, and countries in Asia from 1990 to 2019 showed an overall decreasing trend. The MIR index is suggestive of survival rates and the role of cancer care in individual countries. Asian countries should develop different strategies for gastric cancer screening and prevention according to high-risk age, high-risk gender and HDI.


Assuntos
Neoplasias Gástricas , Feminino , Humanos , Masculino , Ásia/epidemiologia , Ásia Oriental , Incidência , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/mortalidade , Efeitos Psicossociais da Doença
17.
Foods ; 13(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39200526

RESUMO

With the increasing awareness of health, more people have shown a preference for low-alcohol beverages. Seeking various methods to improve the quality of kiwi wine is now a major research interest in the wine industry. In this study, kiwi wine was fermented by Saccharomyces cerevisiae and different non-Saccharomyces strains (Torulaspora delbrueckii, Kluyveromyces thermotolerans, Pichia fermentans) in three methods (pure fermentation, simultaneous, and sequential co-fermentation). The physicochemical characteristics, color parameters, phenolic profiles, total phenolic content (TPC), antioxidant activities, organic acids, and taste sense of the different wines were evaluated to determine the effects of different yeasts and fermentation methods on the quality of the kiwi wine. Results indicated that co-fermentation reduced the contents of alcohol while enhancing the lightness of the kiwi wine. The TPC of sequential co-fermentation with K. thermotolerans/S. cerevisiae was significantly higher than that of their simultaneous co-fermentation. Compared to K. thermotolerans/S. cerevisiae, the antioxidant activities were increased by co-fermentation of T. delbrueckii/S. cerevisiae and P. fermentans/S. cerevisiae. Principal component analysis showed that kiwi wines fermented by different yeasts and inoculation methods could be separated and grouped. Correlation analysis presented positive correlations of phenolic composition, antioxidant activities, and color intensity. This study provided theoretical guidance for co-fermentation of non-Saccharomyces/S. cerevisiae and accelerated the industrialization process of kiwi wine.

18.
Plant Phenomics ; 5: 0121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076281

RESUMO

Accurate assessment of crop biochemical profiles plays a crucial role in diagnosing their physiological status. The conventional destructive methods, although reliable, demand extensive laboratory work for measuring various traits. On the other hand, nondestructive techniques, while efficient and adaptable, often suffer from reduced precision due to the intricate interplay of the field environment and canopy structure. Striking a delicate balance between efficiency and accuracy, we have developed the Bio-Master phenotyping system. This system is capable of simultaneously measuring four vital biochemical components of the canopy profile: dry matter, water, chlorophyll, and nitrogen content. Bio-Master initiates the process by addressing structural influences, through segmenting the fresh plant and then further chopping the segment into uniform small pieces. Subsequently, the system quantifies hyperspectral reflectance and fresh weight over the sample within a controlled dark chamber, utilizing an independent light source. The final step involves employing an embedded estimation model to provide synchronous estimates for the four biochemical components of the measured sample. In this study, we established a comprehensive training dataset encompassing a wide range of rice varieties, nitrogen levels, and growth stages. Gaussian process regression model was used to estimate biochemical contents utilizing reflectance data obtained by Bio-Master. Leave-one-out validation revealed the model's capacity to accurately estimate these contents at both leaf and plant scales. With Bio-Master, measuring a single rice plant takes approximately only 5 min, yielding around 10 values for each of the four biochemical components across the vertical profile. Furthermore, the Bio-Master system allows for immediate measurements near the field, mitigating potential alterations in plant status during transportation and processing. As a result, our measurements are more likely to faithfully represent in situ values. To summarize, the Bio-Master phenotyping system offers an efficient tool for comprehensive crop biochemical profiling. It harnesses the benefits of remote sensing techniques, providing significantly greater efficiency than conventional destructive methods while maintaining superior accuracy when compared to nondestructive approaches.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37957903

RESUMO

BACKGROUND AND PURPOSE: Coronavirus disease 2019 (COVID-19) is a lifethreatening disease worldwide due to its high infection and serious outcomes resulting from acute lung injury. Qingwen Baidu decoction (QBD), a well-known herbal prescription, has shown significant efficacy in patients with Coronavirus disease 2019. Hence, this study aims to uncover the molecular mechanism of QBD in treating COVID-19-related lung injury. METHODS: Traditional Chinese Medicine Systems Pharmacology database (TCMSP), DrugBanks database, and Chinese Knowledge Infrastructure Project (CNKI) were used to retrieve the active ingredients of QBD. Drug and disease targets were collected using UniProt and Online Mendelian Inheritance in Man databases (OMIM). The core targets of QBD for pneumonia were analyzed by the Protein-Protein Interaction Network (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the underlying molecular mechanisms. The analysis of key targets using molecular docking and animal experiments was also validated. RESULTS: A compound-direct-acting target network mainly containing 171 compounds and 110 corresponding direct targets was constructed. The key targets included STAT3, c-JUN, TNF-α, MAPK3, MAPK1, FOS, PPARG, MAPK8, IFNG, NFκB1, etc. Moreover, 117 signaling pathways mainly involved in cytokine storm, inflammatory response, immune stress, oxidative stress and glucose metabolism were found by KEGG. The molecular docking results showed that the quercetin, alanine, and kaempferol in QBD demonstrated the strongest affinity to STAT3, c- JUN, and TNF-α. Experimental results displayed that QBD could effectively reduce the pathological damage to lung tissue by LPS and significantly alleviate the expression levels of the three key targets, thus playing a potential therapeutic role in COVID-19. CONCLUSION: QBD might be a promising therapeutic agent for COVID-19 via ameliorating STAT3-related signals.

20.
J Econ Entomol ; 105(4): 1149-56, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928292

RESUMO

Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is one of the most serious pests of Brassicaceae crops worldwide. Electrophysiological and behavioral responses of P. xylostella to green leaf volatiles (GLVs) alone or together with its female sex pheromone were investigated in laboratory and field. GLVs 1-hexanol and (Z)-3-hexen-1-ol elicited strong electroantennographic responses from unmated male and female P. xylostella, whereas (Z)-3-hexenyl acetate only produced a relatively weak response. The behavioral responses of unmated moths to GLVs were further tested in Y-tube olfactometer experiments. (E)-2-Hexenal, (Z)-3-hexen-1-ol, and (Z)-3-hexenyl acetate induced attraction of males, reaching up to 50%, significantly higher than the response to the unbaited control arm. In field experiments conducted in 2008 and 2009, significantly more moths were captured in traps baited with synthetic sex pheromone with either (Z)-3-hexenyl acetate alone or a blend of (Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol, and (E)-2-hexenal compared with sex pheromone alone and other blend mixtures. These results demonstrated that GLVs could be used to enhance the attraction of P. xylostella males to sex pheromone-baited traps.


Assuntos
Antenas de Artrópodes/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Atrativos Sexuais/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Feminino , Controle de Insetos , Masculino , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA