Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell ; 186(14): 3013-3032.e22, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352855

RESUMO

Mitochondrial DNA (mtDNA) is a potent agonist of the innate immune system; however, the exact immunostimulatory features of mtDNA and the kinetics of detection by cytosolic nucleic acid sensors remain poorly defined. Here, we show that mitochondrial genome instability promotes Z-form DNA accumulation. Z-DNA binding protein 1 (ZBP1) stabilizes Z-form mtDNA and nucleates a cytosolic complex containing cGAS, RIPK1, and RIPK3 to sustain STAT1 phosphorylation and type I interferon (IFN-I) signaling. Elevated Z-form mtDNA, ZBP1 expression, and IFN-I signaling are observed in cardiomyocytes after exposure to Doxorubicin, a first-line chemotherapeutic agent that induces frequent cardiotoxicity in cancer patients. Strikingly, mice lacking ZBP1 or IFN-I signaling are protected from Doxorubicin-induced cardiotoxicity. Our findings reveal ZBP1 as a cooperative partner for cGAS that sustains IFN-I responses to mitochondrial genome instability and highlight ZBP1 as a potential target in heart failure and other disorders where mtDNA stress contributes to interferon-related pathology.


Assuntos
Cardiotoxicidade , DNA Mitocondrial , Animais , Camundongos , DNA Mitocondrial/metabolismo , Imunidade Inata , Interferons/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilação
2.
Cell ; 185(17): 3214-3231.e23, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35907404

RESUMO

Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2G2019S (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2G2019S macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes. Mitochondrial GSDMD pore formation then releases mtROS, promoting a switch to RIPK1/RIPK3/MLKL-dependent necroptosis. Consistent with enhanced necroptosis, infection of Lrrk2G2019S mice with Mycobacterium tuberculosis elicits hyperinflammation and severe immunopathology. Our findings suggest a pivotal role for GSDMD as an executer of multiple cell death pathways and demonstrate that mitochondrial dysfunction can direct immune outcomes via cell death modality switching. This work provides insights into how LRRK2 mutations manifest or exacerbate human diseases and identifies GSDMD-dependent necroptosis as a potential target to limit Lrrk2G2019S-mediated immunopathology.


Assuntos
Mitocôndrias , Necroptose , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Humanos , Inflamassomos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Macrófagos , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Cell ; 175(2): 488-501.e22, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30270045

RESUMO

Detection of viruses by innate immune sensors induces protective antiviral immunity. The viral DNA sensor cyclic GMP-AMP synthase (cGAS) is necessary for detection of HIV by human dendritic cells and macrophages. However, synthesis of HIV DNA during infection is not sufficient for immune activation. The capsid protein, which associates with viral DNA, has a pivotal role in enabling cGAS-mediated immune activation. We now find that NONO is an essential sensor of the HIV capsid in the nucleus. NONO protein directly binds capsid with higher affinity for weakly pathogenic HIV-2 than highly pathogenic HIV-1. Upon infection, NONO is essential for cGAS activation by HIV and cGAS association with HIV DNA in the nucleus. NONO recognizes a conserved region in HIV capsid with limited tolerance for escape mutations. Detection of nuclear viral capsid by NONO to promote DNA sensing by cGAS reveals an innate strategy to achieve distinction of viruses from self in the nucleus.


Assuntos
Proteínas do Capsídeo/imunologia , Proteínas Associadas à Matriz Nuclear/imunologia , Proteínas Associadas à Matriz Nuclear/fisiologia , Fatores de Transcrição de Octâmero/imunologia , Fatores de Transcrição de Octâmero/fisiologia , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/fisiologia , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/fisiologia , Núcleo Celular/metabolismo , DNA Viral/genética , DNA Viral/imunologia , Proteínas de Ligação a DNA , Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-1/genética , HIV-1/imunologia , HIV-2/genética , HIV-2/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/imunologia , Macrófagos/imunologia , Proteínas de Membrana/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/fisiologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/imunologia
4.
Nat Immunol ; 20(7): 879-889, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31182807

RESUMO

CD8+ T cells and natural killer (NK) cells are central cellular components of immune responses against pathogens and cancer, which rely on interleukin (IL)-15 for homeostasis. Here we show that IL-15 also mediates homeostatic priming of CD8+ T cells for antigen-stimulated activation, which is controlled by a deubiquitinase, Otub1. IL-15 mediates membrane recruitment of Otub1, which inhibits ubiquitin-dependent activation of AKT, a kinase that is pivotal for T cell activation and metabolism. Otub1 deficiency in mice causes aberrant responses of CD8+ T cells to IL-15, rendering naive CD8+ T cells hypersensitive to antigen stimulation characterized by enhanced metabolic reprograming and effector functions. Otub1 also controls the maturation and activation of NK cells. Deletion of Otub1 profoundly enhances anticancer immunity by unleashing the activity of CD8+ T cells and NK cells. These findings suggest that Otub1 controls the activation of CD8+ T cells and NK cells by functioning as a checkpoint of IL-15-mediated priming.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Cisteína Endopeptidases/metabolismo , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Cisteína Endopeptidases/deficiência , Enzimas Desubiquitinantes/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interleucina-15/genética , Melanoma Experimental , Camundongos , Camundongos Transgênicos , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina-15/metabolismo , Tolerância a Antígenos Próprios/genética , Tolerância a Antígenos Próprios/imunologia , Transdução de Sinais , Especificidade do Receptor de Antígeno de Linfócitos T , Ubiquitinação
5.
Immunity ; 50(3): 591-599.e6, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893587

RESUMO

Immune suppression is a crucial component of immunoregulation and a subgroup of nucleotide-binding domain (NBD), leucine-rich repeat (LRR)-containing proteins (NLRs) attenuate innate immunity. How this inhibitory function is controlled is unknown. A key question is whether microbial ligands can regulate this inhibition. NLRC3 is a negative regulator that attenuates type I interferon (IFN-I) response by sequestering and attenuating stimulator of interferon genes (STING) activation. Here, we report that NLRC3 binds viral DNA and other nucleic acids through its LRR domain. DNA binding to NLRC3 increases its ATPase activity, and ATP-binding by NLRC3 diminishes its interaction with STING, thus licensing an IFN-I response. This work uncovers a mechanism wherein viral nucleic acid binding releases an inhibitory innate receptor from its target.


Assuntos
DNA Viral/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Nucleicos/metabolismo , Ligação Proteica/imunologia
6.
Immunity ; 50(1): 51-63.e5, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635239

RESUMO

Interferon-inducible human oligoadenylate synthetase-like (OASL) and its mouse ortholog, Oasl2, enhance RNA-sensor RIG-I-mediated type I interferon (IFN) induction and inhibit RNA virus replication. Here, we show that OASL and Oasl2 have the opposite effect in the context of DNA virus infection. In Oasl2-/- mice and OASL-deficient human cells, DNA viruses such as vaccinia, herpes simplex, and adenovirus induced increased IFN production, which resulted in reduced virus replication and pathology. Correspondingly, ectopic expression of OASL in human cells inhibited IFN induction through the cGAS-STING DNA-sensing pathway. cGAS was necessary for the reduced DNA virus replication observed in OASL-deficient cells. OASL directly and specifically bound to cGAS independently of double-stranded DNA, resulting in a non-competitive inhibition of the second messenger cyclic GMP-AMP production. Our findings define distinct mechanisms by which OASL differentially regulates host IFN responses during RNA and DNA virus infection and identify OASL as a negative-feedback regulator of cGAS.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Infecções por Vírus de DNA/imunologia , Vírus de DNA/fisiologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , 2',5'-Oligoadenilato Sintetase/genética , Animais , AMP Cíclico/metabolismo , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Células THP-1 , Replicação Viral
7.
PLoS Pathog ; 20(7): e1012398, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038050

RESUMO

Inflammasomes play pivotal roles in inflammation by processing and promoting the secretion of IL-1ß. Caspase-1 is involved in the maturation of IL-1ß and IL-18, while human caspase-4 specifically processes IL-18. Recent structural studies of caspase-4 bound to Pro-IL-18 reveal the molecular basis of Pro-IL-18 activation by caspase-4. However, the mechanism of caspase-1 processing of pro-IL-1ß and other IL-1ß-converting enzymes remains elusive. Here, we observed that swine Pro-IL-1ß (sPro-IL-1ß) exists as an oligomeric precursor unlike monomeric human Pro-IL-1ß (hPro-IL-1ß). Interestingly, Seneca Valley Virus (SVV) 3C protease cleaves sPro-IL-1ß to produce mature IL-1ß, while it cleaves hPro-IL-1ß but does not produce mature IL-1ß in a specific manner. When the inflammasome is blocked, SVV 3C continues to activate IL-1ß through direct cleavage in porcine alveolar macrophages (PAMs). Through molecular modeling and mutagenesis studies, we discovered that the pro-domain of sPro-IL-1ß serves as an 'exosite' with its hydrophobic residues docking into a positively charged 3C protease pocket, thereby directing the substrate to the active site. The cleavage of swine IL-1ß (sIL-1ß) generates a monomeric and active form of sIL-1ß, initiating the downstream signaling. Thus, these studies provide IL-1ß is an inflammatory sensor that directly detects viral protease through an independent pathway operating in parallel with host inflammasomes.

8.
Nature ; 587(7835): 673-677, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911481

RESUMO

Nucleic acids derived from pathogens induce potent innate immune responses1-6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor that catalyses the synthesis of the cyclic dinucleotide cyclic GMP-AMP, which mediates the induction of type I interferons through the STING-TBK1-IRF3 signalling axis7-11. cGAS was previously thought to not react with self DNA owing to its cytosolic localization2,12,13; however, recent studies have shown that cGAS is localized mostly in the nucleus and has low activity as a result of tight nuclear tethering14-18. Here we show that cGAS binds to nucleosomes with nanomolar affinity and that nucleosome binding potently inhibits its catalytic activity. To elucidate the molecular basis of cGAS inactivation by nuclear tethering, we determined the structure of mouse cGAS bound to human nucleosome by cryo-electron microscopy. The structure shows that cGAS binds to a negatively charged acidic patch formed by histones H2A and H2B via its second DNA-binding site19. High-affinity nucleosome binding blocks double-stranded DNA binding and maintains cGAS in an inactive conformation. Mutations of cGAS that disrupt nucleosome binding alter cGAS-mediated signalling in cells.


Assuntos
Nucleossomos/química , Nucleossomos/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Animais , Biocatálise , Domínio Catalítico , Linhagem Celular , Microscopia Crioeletrônica , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Humanos , Camundongos , Modelos Moleculares , Mutação , Nucleossomos/ultraestrutura , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/ultraestrutura , Ligação Proteica , Transdução de Sinais
9.
PLoS Pathog ; 19(9): e1011641, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37708231

RESUMO

RNA viruses cause numerous infectious diseases in humans and animals. The crosstalk between RNA viruses and the innate DNA sensing pathways attracts increasing attention. Recent studies showed that the cGAS-STING pathway plays an important role in restricting RNA viruses via mitochondria DNA (mtDNA) mediated activation. However, the mechanisms of cGAS mediated innate immune evasion by RNA viruses remain unknown. Here, we report that seneca valley virus (SVV) protease 3C disrupts mtDNA mediated innate immune sensing by cleaving porcine cGAS (pcGAS) in a species-specific manner. Mechanistically, a W/Q motif within the N-terminal domain of pcGAS is a unique cleavage site recognized by SVV 3C. Three conserved catalytic residues of SVV 3C cooperatively contribute to the cleavage of pcGAS, but not human cGAS (hcGAS) or mouse cGAS (mcGAS). Additionally, upon SVV infection and poly(dA:dT) transfection, pcGAS and SVV 3C colocalizes in the cells. Furthermore, SVV 3C disrupts pcGAS-mediated DNA binding, cGAMP synthesis and interferon induction by specifically cleaving pcGAS. This work uncovers a novel mechanism by which the viral protease cleaves the DNA sensor cGAS to evade innate immune response, suggesting a new antiviral approach against picornaviruses.


Assuntos
Nucleotidiltransferases , Peptídeo Hidrolases , Picornaviridae , Animais , Humanos , Camundongos , DNA Mitocondrial , Endopeptidases , Mitocôndrias , Picornaviridae/fisiologia , Suínos , Nucleotidiltransferases/metabolismo
10.
PLoS Biol ; 20(3): e3001589, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324891

RESUMO

Clostridioides difficile secretes Toxin B (TcdB) as one of its major virulence factors, which binds to intestinal epithelial and subepithelial receptors, including frizzled proteins and chondroitin sulfate proteoglycan 4 (CSPG4). Here, we present cryo-EM structures of full-length TcdB in complex with the CSPG4 domain 1 fragment (D1401-560) at cytosolic pH and the cysteine-rich domain of frizzled-2 (CRD2) at both cytosolic and acidic pHs. CSPG4 specifically binds to the autoprocessing and delivery domains of TcdB via networks of salt bridges, hydrophobic and aromatic/proline interactions, which are disrupted upon acidification eventually leading to CSPG4 drastically dissociating from TcdB. In contrast, FZD2 moderately dissociates from TcdB under acidic pH, most likely due to its partial unfolding. These results reveal structural dynamics of TcdB during its preentry step upon endosomal acidification, which provide a basis for developing therapeutics against C. difficile infections.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Domínios Proteicos , Fatores de Virulência/metabolismo
11.
Nature ; 569(7758): 718-722, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118511

RESUMO

Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNß after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.


Assuntos
Motivos de Aminoácidos , Sequência Conservada , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Células HEK293 , Humanos , Interferon beta/metabolismo , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Nucleotídeos Cíclicos/metabolismo , Ligação Proteica , Transdução de Sinais
12.
Nature ; 557(7706): 516-521, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29769717

RESUMO

Chromatin remodelling factors (CHRs) typically function to alter chromatin structure. CHRs also reside in ribonucleoprotein complexes, but little is known about their RNA-related functions. Here we show that CHR2 (also known as BRM), the ATPase subunit of the large switch/sucrose non-fermentable (SWI/SNF) complex, is a partner of the Microprocessor component Serrate (SE). CHR2 promotes the transcription of primary microRNA precursors (pri-miRNAs) while repressing miRNA accumulation in vivo. Direct interaction with SE is required for post-transcriptional inhibition of miRNA accumulation by CHR2 but not for its transcriptional activity. CHR2 can directly bind to and unwind pri-miRNAs and inhibit their processing, and this inhibition requires the remodelling and helicase activity of CHR2 in vitro and in vivo. Furthermore, the secondary structures of pri-miRNAs differed between wild-type Arabidopsis thaliana and chr2 mutants. We conclude that CHR2 accesses pri-miRNAs through SE and remodels their secondary structures, preventing downstream processing by DCL1 and HYL1. Our study uncovers pri-miRNAs as a substrate of CHR2, and an additional regulatory layer upstream of Microprocessor activity to control miRNA accumulation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , MicroRNAs/biossíntese , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Ligação Proteica , Dobramento de RNA , Processamento Pós-Transcricional do RNA , Transcrição Gênica
13.
Nat Immunol ; 12(10): 1002-9, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21874024

RESUMO

T cell activation is subject to tight regulation to avoid inappropriate responses to self antigens. Here we show that genetic deficiency in the ubiquitin ligase Peli1 caused hyperactivation of T cells and rendered T cells refractory to suppression by regulatory T cells and transforming growth factor-ß (TGF-ß). As a result, Peli1-deficient mice spontaneously developed autoimmunity characterized by multiorgan inflammation and autoantibody production. Peli1 deficiency resulted in the nuclear accumulation of c-Rel, a member of the NF-κB family of transcription factors with pivotal roles in T cell activation. Peli1 negatively regulated c-Rel by mediating its Lys48 (K48) ubiquitination. Our results identify Peli1 as a critical factor in the maintenance of peripheral T cell tolerance and demonstrate a previously unknown mechanism of c-Rel regulation.


Assuntos
Autoimunidade , Ativação Linfocitária , Proteínas Nucleares/fisiologia , Linfócitos T/imunologia , Animais , Antígenos CD28/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T Reguladores/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Ubiquitina-Proteína Ligases , Ubiquitinação
14.
Proc Natl Acad Sci U S A ; 117(12): 6550-6558, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152123

RESUMO

The 1918 influenza A virus (IAV) caused the most severe flu pandemic in recorded human history. Nonstructural protein 1 (NS1) is an important virulence factor of the 1918 IAV. NS1 antagonizes host defense mechanisms through interactions with multiple host factors. One pathway by which NS1 increases virulence is through the activation of phosphoinositide 3-kinase (PI3K) by binding to its p85ß subunit. Here we present the mechanism underlying the molecular recognition of the p85ß subunit by 1918 NS1. Using X-ray crystallography, we determine the structure of 1918 NS1 complexed with p85ß of human PI3K. We find that the 1918 NS1 effector domain (1918 NS1ED) undergoes a conformational change to bind p85ß. Using NMR relaxation dispersion and molecular dynamics simulation, we identify that free 1918 NS1ED exists in a dynamic equilibrium between p85ß-binding-competent and -incompetent conformations in the submillisecond timescale. Moreover, we discover that NS1ED proteins of 1918 (H1N1) and Udorn (H3N2) strains exhibit drastically different conformational dynamics and binding kinetics to p85ß. These results provide evidence of strain-dependent conformational dynamics of NS1. Using kinetic modeling based on the experimental data, we demonstrate that 1918 NS1ED can result in the faster hijacking of p85ß compared to Ud NS1ED, although the former has a lower affinity to p85ß than the latter. Our results suggest that the difference in binding kinetics may impact the competition with cellular antiviral responses for the activation of PI3K. We anticipate that our findings will increase the understanding of the strain-dependent behaviors of influenza NS1 proteins.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza A/classificação , Vírus da Influenza A/patogenicidade , Influenza Humana/epidemiologia , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Especificidade da Espécie , Relação Estrutura-Atividade , Fatores de Virulência/química , Fatores de Virulência/metabolismo
15.
Immunity ; 39(6): 1019-31, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24332030

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2',5' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-ß gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-ß reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2',5' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization.


Assuntos
DNA/metabolismo , Modelos Moleculares , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Animais , Sítios de Ligação/genética , Domínio Catalítico , Humanos , Camundongos , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/genética , Ligação Proteica , Estrutura Quaternária de Proteína
16.
J Immunol ; 205(7): 1886-1896, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826280

RESUMO

The innate immune system is the first line of defense against bacterial and viral infections. The recognition of pathogen-associated molecular patterns by the RIG-I-like receptors, TLRs, and cGAS leads to the induction of IFN-I by activating the transcription factor IRF-3. Although the mechanism of IRF-3 activation has been extensively studied, the structural basis of IRF-3 activation upon phosphorylation is not fully understood. In this study, we determined the crystal structures of phosphorylated human and mouse IRF-3 bound to CREB-binding protein (CBP), which reveal that phosphorylated IRF-3 forms a dimer via pSer386 (pSer379 in mouse IRF-3) and a downstream pLxIS motif. Size-exclusion chromatography and cell-based studies show that mutations of key residues interacting with pSer386 severely impair IRF-3 activation and IFN-ß induction. By contrast, phosphorylation of Ser396 within the pLxIS motif of human IRF-3 only plays a moderate role in IRF-3 activation. The mouse IRF-3/CBP complex structure reveals that the mechanism of mouse IRF-3 activation is similar but distinct from human IRF-3. These structural and functional studies reveal the detailed mechanism of IRF-3 activation upon phosphorylation.


Assuntos
Proteína de Ligação a CREB/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Animais , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Camundongos , Mutagênese Sítio-Dirigida , Moléculas com Motivos Associados a Patógenos/imunologia , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Células Sf9 , Especificidade da Espécie , Spodoptera , Relação Estrutura-Atividade
17.
J Immunol ; 205(1): 153-167, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32404352

RESUMO

Tripartite motif-containing proteins (TRIMs) play a variety of recently described roles in innate immunity. Although many TRIMs regulate type I IFN expression following cytosolic nucleic acid sensing of viruses, their contribution to innate immune signaling and gene expression during bacterial infection remains largely unknown. Because Mycobacterium tuberculosis is an activator of cGAS-dependent cytosolic DNA sensing, we set out to investigate a role for TRIM proteins in regulating macrophage responses to M. tuberculosis In this study, we demonstrate that TRIM14, a noncanonical TRIM that lacks an E3 ubiquitin ligase RING domain, is a critical negative regulator of the type I IFN response in Mus musculus macrophages. We show that TRIM14 interacts with both cGAS and TBK1 and that macrophages lacking TRIM14 dramatically hyperinduce IFN stimulated gene (ISG) expression following M. tuberculosis infection, cytosolic nucleic acid transfection, and IFN-ß treatment. Consistent with a defect in resolution of the type I IFN response, Trim14 knockout macrophages have more phospho-Ser754 STAT3 relative to phospho-Ser727 and fail to upregulate the STAT3 target Socs3, which is required to turn off IFNAR signaling. These data support a model whereby TRIM14 acts as a scaffold between TBK1 and STAT3 to promote phosphorylation of STAT3 at Ser727 and resolve ISG expression. Remarkably, Trim14 knockout macrophages hyperinduce expression of antimicrobial genes like Nos2 and are significantly better than control cells at limiting M. tuberculosis replication. Collectively, these data reveal an unappreciated role for TRIM14 in resolving type I IFN responses and controlling M. tuberculosis infection.


Assuntos
Interferon Tipo I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mycobacterium tuberculosis/imunologia , Transdução de Sinais/imunologia , Proteínas com Motivo Tripartido/metabolismo , Tuberculose/imunologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/isolamento & purificação , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/isolamento & purificação , Nucleotidiltransferases/metabolismo , Fosforilação/imunologia , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/metabolismo , Células RAW 264.7 , Receptor de Interferon alfa e beta/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/isolamento & purificação , Tuberculose/microbiologia
18.
Cell Mol Biol (Noisy-le-grand) ; 68(3): 158-170, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35988176

RESUMO

Tumors are the biggest opponents in the history of human diseases, and they cannot be eliminated so far. The only way to treat tumors is to detect them early so that the survival rate can be improved by early treatment. For tumor detection, CT scan is the most commonly used, and PET/CT is an enhanced version of CT technology. Although PET/CT can produce relatively clear images of the human body, due to the complex structure of the human body, there are many ghosts and shadows, and the images cannot be accurately judged. Therefore, this paper aims to prepare high-definition nanoparticle contrast agents, hoping to make PET/CT images clearer and easier to distinguish. In this paper, the advantages of gold nanoparticles are fully analyzed for the preparation of contrast agents, and a gold nano-contrast agent coated with bovine serum albumin (BSA) is proposed. Gold nanoparticles (GNRs) were prepared by the traditional induction method and their properties were analyzed. Finally, taking mice as the experimental object, a comparative experiment was carried out, and the toxicological and optical properties were analyzed. The experimental results show that the adsorption performance of the BSA-coated gold nanoparticles prepared in this paper is more than 90% at different temperatures. And through the comparison experiment, the contrast agent prepared in this paper has an increased signal-to-noise(StN) ratio change rate of more than 50%, which can be well applied to PET/CT imaging.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Animais , Meios de Contraste , Ouro/química , Humanos , Camundongos , Nanopartículas/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Soroalbumina Bovina/química
19.
Proc Natl Acad Sci U S A ; 113(24): E3403-12, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27302953

RESUMO

Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-ß) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.


Assuntos
Fator Regulador 3 de Interferon/química , Rotavirus/química , Proteínas não Estruturais Virais/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Motivos de Aminoácidos , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/imunologia , Humanos , Evasão da Resposta Imune , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Domínios Proteicos , Rotavirus/genética , Rotavirus/imunologia , Infecções por Rotavirus/genética , Infecções por Rotavirus/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
20.
Biophys J ; 114(7): 1590-1603, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642029

RESUMO

Protein kinase C (PKC) isoenzymes are multi-modular proteins activated at the membrane surface to regulate signal transduction processes. When activated by second messengers, PKC undergoes a drastic conformational and spatial transition from the inactive cytosolic state to the activated membrane-bound state. The complete structure of either state of PKC remains elusive. We demonstrate, using NMR spectroscopy, that the isolated Ca2+-sensing membrane-binding C2 domain of the conventional PKCα interacts with a conserved hydrophobic motif of the kinase C-terminal region, and we report a structural model of the complex. Our data suggest that the C-terminal region plays a dual role in regulating the PKC activity: activating, through sensitization of PKC to intracellular Ca2+ oscillations; and auto-inhibitory, through its interaction with a conserved positively charged region of the C2 domain.


Assuntos
Proteína Quinase C-alfa/química , Proteína Quinase C-alfa/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutação , Domínios Proteicos , Proteína Quinase C-alfa/genética , Ratos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA