Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biol Reprod ; 110(3): 490-500, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38084072

RESUMO

Heart and neural crest derivatives expressed transcript 2 (HAND2) is a critical mediator of progesterone action in endometrial stromal cells. Silencing of Hand2 expression in mouse uterus leads to an unopposed FGFR-mediated action that causes female mice infertility. To investigate the involvement of HAND2-FGFR signaling in pathogenesis of adenomyosis, immunohistochemistry, in situ hybridization, and quantitative real-time PCR were employed to assess gene expression in the normal endometrium, the paired eutopic endometrium and ectopic lesions obtained from women with adenomyosis. DNA methylation in the regions of HAND2 promoter and the first exon was also monitored in these samples. Our results revealed that HAND2 expression were dramatically reduced, but FGF9 expression and FGFR-ERK1/2-mediated MAPK signaling pathway were enhanced in the eutopic endometrium and ectopic lesions of patients with adenomyosis compared to the normal controls. Interestingly, expression of HAND2-AS1, a long noncoding RNA that resides adjacent to HAND2 in genome, was also reduced in adenomyosis. DNA methylation analysis revealed that the bidirectional promoter between HAND2 and HAND2-AS1, and the first exon of HAND2 gene was heavily methylated in the eutopic endometrium and the ectopic lesions of adenomyosis. To investigate the regulation of gene expression by HAND2-AS1, HAND2-AS1 expression was silenced in human endometrial stromal cells. In contrast to the downregulation of HAND2 in response to HAND2-AS1 silencing, FGF9 expression was augmented significantly. Endometrial stromal cells lacking HAND2-AS1 exhibited enhanced proliferation and migration potentials. Collectively, our studies revealed a new molecular mechanism by which HAND2-AS1 is involved in the pathogenesis of adenomyosis via modulating HAND2-FGFR-mediated signaling.


Assuntos
Adenomiose , Infertilidade Feminina , RNA Longo não Codificante , Animais , Feminino , Humanos , Camundongos , Adenomiose/genética , Adenomiose/metabolismo , Endométrio/metabolismo , Infertilidade Feminina/metabolismo , Progesterona/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
2.
Pediatr Res ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769403

RESUMO

BACKGROUND: To investigate the correlation between testicular fat content (TFC) and sex hormone levels in patients with cryptorchidism and its value in assessing postsurgical testicular function. METHODS: Pelvic MRI with the mDIXON Quant sequence was performed on 23 cryptorchidism patients and 15 normal controls. The TFC before and after surgery was measured and compared. The correlations between cryptorchid TFC and testosterone (TSTO), follicle-stimulating hormone (FSH), and estradiol (E2) levels were analyzed, as was the specificity of TFC and each hormone for assessing testicular function after surgery. RESULTS: The preoperative cryptorchid TFC (3.06% ± 0.74) was higher than that of the normal controls (1.36% ± 0.49). TSTO was negatively correlated with the cryptorchid TFC (r = -0.698), while FSH and E2 were positively associated with the cryptorchid TFC (r = 0.658, 0.676). Cryptorchid TFC after surgery (2.01% ± 0.55) was lower than the preoperative TFC, but hormone levels were not significantly different. The TFC after surgery (0.864) had a larger AUC value than did TSTO (0.639), FSH (0.597), and E2 (0.586). CONCLUSION: Noninvasive quantification of cryptorchid TFC using the mDIXON Quant sequence is more specific than hormone levels for assessing postsurgical changes in testicular function. IMPACT: The cryptorchid testicular fat content is significantly higher than the normal testicular fat content. Cryptorchid testicular fat content is negatively correlated with presurgical serum TSTO levels and positively correlated with presurgical FSH and E2 levels. Pre- and postoperative changes in cryptorchid testicular fat content change are more sensitive than changes in TSTO, FSH, or E2 levels. Noninvasive cryptorchid testicular fat content quantified by the mDIXON Quant sequence is more specific than serum TSTO, FSH, and E2 levels for assessing changes in testicular function after cryptorchidism surgery.

3.
J Neuroinflammation ; 20(1): 59, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879305

RESUMO

BACKGROUND: Chronic pelvic pain (CPP) is a common symptom of endometriosis. Women with endometriosis are also at a high risk of suffering from anxiety, depression, and other psychological disorders. Recent studies indicate that endometriosis can affect the central nervous system (CNS). Changes in the functional activity of neurons, functional magnetic resonance imaging signals, and gene expression have been reported in the brains of rat and mouse models of endometriosis. The majority of the studies thus far have focused on neuronal changes, whereas changes in the glial cells in different brain regions have not been studied. METHODS: Endometriosis was induced in female mice (45-day-old; n = 6-11/timepoint) by syngeneic transfer of donor uterine tissue into the peritoneal cavity of recipient animals. Brains, spines, and endometriotic lesions were collected for analysis at 4, 8, 16, and 32 days post-induction. Sham surgery mice were used as controls (n = 6/timepoint). The pain was assessed using behavioral tests. Using immunohistochemistry for microglia marker ionized calcium-binding adapter molecule-1 (IBA1) and machine learning "Weka trainable segmentation" plugin in Fiji, we evaluated the morphological changes in microglia in different brain regions. Changes in glial fibrillary acidic protein (GFAP) for astrocytes, tumor necrosis factor (TNF), and interleukin-6 (IL6) were also evaluated. RESULTS: We observed an increase in microglial soma size in the cortex, hippocampus, thalamus, and hypothalamus of mice with endometriosis compared to sham controls on days 8, 16, and 32. The percentage of IBA1 and GFAP-positive area was increased in the cortex, hippocampus, thalamus, and hypothalamus in mice with endometriosis compared to sham controls on day 16. The number of microglia and astrocytes did not differ between endometriosis and sham control groups. We observed increased TNF and IL6 expression when expression levels from all brain regions were combined. Mice with endometriosis displayed reduced burrowing behavior and hyperalgesia in the abdomen and hind-paw. CONCLUSION: We believe this is the first report of central nervous system-wide glial activation in a mouse model of endometriosis. These results have significant implications for understanding chronic pain associated with endometriosis and other issues such as anxiety and depression in women with endometriosis.


Assuntos
Dor Crônica , Endometriose , Feminino , Camundongos , Ratos , Animais , Humanos , Endometriose/complicações , Interleucina-6 , Sistema Nervoso Central , Encéfalo , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças
4.
Environ Sci Technol ; 57(46): 17796-17807, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36802614

RESUMO

In this study, we explored the effects of 4 weeks of intermittent hypoxic exposure (IHE) on liver angiogenesis and related regulatory mechanisms in largemouth bass (Micropterus salmoides). The results indicated that the O2 tension for loss of equilibrium (LOE) decreased from 1.17 to 0.66 mg/L after 4 weeks of IHE. Meanwhile, the red blood cell (RBC) and hemoglobin concentrations significantly increased during IHE. Our investigation also found that the observed increase in angiogenesis was correlated with a high expression of related regulators, such as Jagged, phosphoinositide-3-kinase (PI3K), and mitogen-activated protein kinase (MAPK). After 4 weeks of IHE, the overexpression of factors related to angiogenesis processes mediated by HIF-independent pathways (such as nuclear factor kappa-B (NF-κB), NADPH oxidase 1 (NOX1), and interleukin 8 (IL8)) was correlated with the accumulation of lactic acid (LA) in the liver. The addition of cabozantinib, a specific inhibitor of VEGFR2, blocked the phosphorylation of VEGFR2 and downregulated the expression of downstream angiogenesis regulators in largemouth bass hepatocytes exposed to hypoxia for 4 h. These results suggested that IHE promoted liver vascular remodeling by the regulation of angiogenesis factors, presenting a potential mechanism for the improvement of hypoxia tolerance in largemouth bass.


Assuntos
Bass , Animais , Bass/metabolismo , Remodelação Vascular , Angiogênese , Hipóxia/metabolismo , Fígado/metabolismo
5.
Biol Reprod ; 105(4): 859-875, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34106247

RESUMO

Basigin (BSG) is a transmembrane glycoprotein involved in cell proliferation, angiogenesis, and tissue remodeling. BSG has been shown to be essential for male and female reproduction although little is known about its role in normal uterine function. To study the potential function of BSG in the female reproductive tract, we generated mice with conditional knockout of Bsg in uterine cells using progesterone receptor-Cre and hypothesized that BSG is required for normal pregnancy in mice. Fertility study data showed that the conditional knockout mice had significantly reduced fertility compared to controls. Ovarian function of the conditional knockout mice appeared normal with no difference in the number of superovulated oocytes collected or in serum progesterone levels between the conditional knockout and the control mice. Uterine tissues collected at various times of gestation showed increased abnormalities in implantation, decidualization, placentation, and parturition in the conditional knockout mice. Uterine cross sections on Day 5 of pregnancy showed implantation failure and abnormal uterine epithelial differentiation in a large proportion of the conditional knockout mice. There was a compromised decidual response to artificial decidualization stimuli and decreased mRNA and protein levels for decidualization genes in the uteri of the conditional knockout mice. We also observed altered protein expression of monocarboxylate transporter 1 (MCT1), as well as impaired angiogenesis in the conditional knockout uteri compared to the controls. These results support that BSG is required for successful pregnancy through its functions in implantation and decidualization.


Assuntos
Basigina/genética , Infertilidade/genética , Anormalidades Urogenitais/genética , Útero/anormalidades , Animais , Basigina/metabolismo , Feminino , Infertilidade/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Anormalidades Urogenitais/metabolismo , Útero/metabolismo , Útero/fisiopatologia
6.
PLoS Genet ; 13(3): e1006654, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28278176

RESUMO

In the mammary gland, genetic circuits controlled by estrogen, progesterone, and prolactin, act in concert with pathways regulated by members of the epidermal growth factor family to orchestrate growth and morphogenesis during puberty, pregnancy and lactation. However, the precise mechanisms underlying the crosstalk between the hormonal and growth factor pathways remain poorly understood. We have identified the CUB and zona pellucida-like domain-containing protein 1 (CUZD1), expressed in mammary ductal and alveolar epithelium, as a novel mediator of mammary gland proliferation and differentiation during pregnancy and lactation. Cuzd1-null mice exhibited a striking impairment in mammary ductal branching and alveolar development during pregnancy, resulting in a subsequent defect in lactation. Gene expression profiling of mammary epithelium revealed that CUZD1 regulates the expression of a subset of the EGF family growth factors, epiregulin, neuregulin-1, and epigen, which act in an autocrine fashion to activate ErbB1 and ErbB4 receptors. Proteomic studies further revealed that CUZD1 interacts with a complex containing JAK1/JAK2 and STAT5, downstream transducers of prolactin signaling in the mammary gland. In the absence of CUZD1, STAT5 phosphorylation in the mammary epithelium during alveologenesis was abolished. Conversely, elevated expression of Cuzd1 in mammary epithelial cells stimulated prolactin-induced phosphorylation and nuclear translocation of STAT5. Chromatin immunoprecipitation confirmed co-occupancy of phosphorylated STAT5 and CUZD1 in the regulatory regions of epiregulin, a potential regulator of epithelial proliferation, and whey acidic protein, a marker of epithelial differentiation. Collectively, these findings suggest that CUZD1 plays a critical role in prolactin-induced JAK/STAT5 signaling that controls the expression of key STAT5 target genes involved in mammary epithelial proliferation and differentiation during alveolar development.


Assuntos
Janus Quinase 1/genética , Janus Quinase 2/genética , Glândulas Mamárias Animais/metabolismo , Proteínas de Membrana/genética , Fator de Transcrição STAT5/genética , Transdução de Sinais/genética , Animais , Western Blotting , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Família de Proteínas EGF/genética , Família de Proteínas EGF/metabolismo , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fosforilação/efeitos dos fármacos , Gravidez , Prolactina/farmacologia , Ligação Proteica , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/metabolismo
7.
J Biol Chem ; 293(8): 2850-2864, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29321207

RESUMO

The peptide hormone prolactin (PRL) and certain members of the epidermal growth factor (EGF) family play central roles in mammary gland development and physiology, and their dysregulation has been implicated in mammary tumorigenesis. Our recent studies have revealed that the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) is a critical factor for PRL-mediated activation of the transcription factor STAT5 in mouse mammary epithelium. Of note, CUZD1 controls production of a specific subset of the EGF family growth factors and consequent activation of their receptors. Here, we found that consistent with this finding, CUZD1 overexpression in non-transformed mammary epithelial HC11 cells increases their proliferation and induces tumorigenic characteristics in these cells. When introduced orthotopically in mouse mammary glands, these cells formed adenocarcinomas, exhibiting elevated levels of STAT5 phosphorylation and activation of the EGF signaling pathway. Selective blockade of STAT5 phosphorylation by pimozide, a small-molecule inhibitor, markedly reduced the production of the EGF family growth factors and inhibited PRL-induced tumor cell proliferation in vitro Pimozide administration to mice also suppressed CUZD1-driven mammary tumorigenesis in vivo Analysis of human MCF7 breast cancer cells indicated that CUZD1 controls the production of the same subset of EGF family members in these cells as in the mouse. Moreover, pimozide treatment reduced the proliferation of these cancer cells. Collectively, these findings indicate that overexpression of CUZD1, a regulator of growth factor pathways controlled by PRL and STAT5, promotes mammary tumorigenesis. Blockade of the STAT5 signaling pathway downstream of CUZD1 may offer a therapeutic strategy for managing these breast tumors.


Assuntos
Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Animais , Anticarcinógenos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Interferência de RNA , Receptores da Prolactina/antagonistas & inibidores , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT5/antagonistas & inibidores , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
PLoS Genet ; 11(8): e1005458, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26305333

RESUMO

During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal-endothelial and stromal-trophoblast crosstalk critical for placenta development and establishment of pregnancy.


Assuntos
Decídua/metabolismo , Placentação , Proteínas rac1 de Ligação ao GTP/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Masculino , Camundongos Transgênicos , Neovascularização Fisiológica , Gravidez , Ativação Transcricional , Trofoblastos , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
PLoS Genet ; 8(2): e1002500, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22383889

RESUMO

The mammalian Msx homeobox genes, Msx1 and Msx2, encode transcription factors that control organogenesis and tissue interactions during embryonic development. We observed overlapping expression of these factors in uterine epithelial and stromal compartments of pregnant mice prior to embryo implantation. Conditional ablation of both Msx1 and Msx2 in the uterus resulted in female infertility due to a failure in implantation. In these mutant mice (Msx1/2(d/d)), the uterine epithelium exhibited persistent proliferative activity and failed to attach to the embryos. Gene expression profiling of uterine epithelium and stroma of Msx1/2(d/d) mice revealed an elevated expression of several members of the Wnt gene family in the preimplantation uterus. Increased canonical Wnt signaling in the stromal cells activated ß-catenin, stimulating the production of a subset of fibroblast growth factors (FGFs) in these cells. The secreted FGFs acted in a paracrine manner via the FGF receptors in the epithelium to promote epithelial proliferation, thereby preventing differentiation of this tissue and creating a non-receptive uterus refractory to implantation. Collectively, these findings delineate a unique signaling network, involving Msx1/2, Wnts, and FGFs, which operate in the uterus at the time of implantation to control the mesenchymal-epithelial dialogue critical for successful establishment of pregnancy.


Assuntos
Implantação do Embrião/genética , Proteínas de Homeodomínio/genética , Fator de Transcrição MSX1/genética , Prenhez/genética , Animais , Epitélio/fisiologia , Feminino , Genes Homeobox , Camundongos , Comunicação Parácrina/genética , Gravidez , Células Estromais/fisiologia , Útero/citologia , Útero/fisiologia
10.
J Biol Chem ; 287(23): 19622-30, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22514284

RESUMO

Concerted actions of estrogen and progesterone via their cognate receptors orchestrate changes in the uterine tissue, regulating implantation during early pregnancy. The uterine stromal cells undergo steroid-dependent differentiation into morphologically and functionally distinct decidual cells, which support embryonic growth and survival. The hormone-regulated pathways underlying this unique cellular transformation are not fully understood. Previous studies in the mouse revealed that, following embryo attachment, de novo synthesis of estrogen by the decidual cells is critical for stromal differentiation. In this study we report that Fos-related antigen 1 (FRA-1), a member of the Fos family of transcription factors, is a downstream target of regulation by intrauterine estrogen. FRA-1 expression was localized in the differentiating uterine stromal cells surrounding the implanted embryo. Attenuation of estrogen receptor α (Esr1) expression by siRNA mediated silencing in primary uterine stromal cells suppressed FRA-1 expression. Furthermore, chromatin immunoprecipitation demonstrated direct recruitment of ESR1 to an estrogen response element in the Fra-1 promoter. Down-regulation of Fra-1 expression during in vitro decidualization blocked stromal differentiation and resulted in a marked decrease in stromal cell migration. Interestingly, FRA-1 controls the expression of matrix metalloproteinases MMP9 and MMP13, which are critical modulators of stromal extracellular matrix remodeling. Collectively, these results suggest that FRA-1, induced in response to estrogen signaling via ESR1, is a key regulator of stromal differentiation and remodeling during early pregnancy.


Assuntos
Diferenciação Celular/fisiologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Gravidez/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Útero/metabolismo , Animais , Movimento Celular/fisiologia , Implantação do Embrião/fisiologia , Receptor alfa de Estrogênio/genética , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Masculino , Metaloproteinase 13 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Camundongos , Células Estromais/citologia , Células Estromais/metabolismo , Útero/citologia
11.
PLoS Med ; 10(11): e1001551, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24265601

RESUMO

BACKGROUND: Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development. METHODS AND FINDINGS: Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression. CONCLUSIONS: HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies. Please see later in the article for the Editors' Summary.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Metilação de DNA , Neoplasias do Endométrio/genética , Endométrio/patologia , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Idoso , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diagnóstico Precoce , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Humanos , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/metabolismo , Progesterona/uso terapêutico , RNA/metabolismo
12.
BMC Med Genomics ; 16(1): 327, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087342

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a prevalent malignancy worldwide, with increasing incidence and mortality rates. Although treatment options have improved, CRC remains a leading cause of death due to metastasis. Early intervention can significantly improve patient outcomes, making it crucial to understand the molecular mechanisms underlying CRC metastasis. In this study, we performed bioinformatics analysis to identify potential genes associated with CRC metastasis. METHODS: We downloaded and integrated gene expression datasets (GSE89393, GSE100243, and GSE144259) from GEO database. Differential expression analysis was conducted, followed by Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The hub gene SERPINA3 was selected for further in vitro functional studies. Additionally, the role of miR-137-3p/miR-296-5p/ Serpin family A member 3 (SERPINA3) in CRC cell function was investigated using in vitro assays. RESULTS: Analysis of the gene expression datasets revealed differentially expressed genes (DEGs) associated with CRC metastasis. GO analysis showed enrichment in biological processes such as blood coagulation regulation and wound healing. Cellular component analysis highlighted extracellular matrix components and secretory granules. Molecular function analysis identified activities such as serine-type endopeptidase inhibition and lipoprotein receptor binding. KEGG analysis revealed involvement in pathways related to complement and coagulation cascades, cholesterol metabolism, and immune responses. The common DEGs among the datasets were further investigated. We identified SERPINA3 as a hub gene associated with CRC metastasis. SERPINA3 exerted enhanced effects on migration, proliferation and epithelial-mesenchymal transition (EMT) and inhibitory effects on caspase-3/-9 activities in HT29 and SW620 cells. MiR-137-3p overexpression increased activities of caspase-3/-9, decreased migration and proliferation, and also repressed EMT in HT29 cells, which were obviously attenuated by SERPINA3 enforced overexpression. Consistently, SERPINA3 enforced overexpression also largely reversed miR-296-5p mimics-induced increased in activities of caspase-3/-9, decrease in migration, proliferation and EMT in HT29 cells. CONCLUSION: Through bioinformatics analysis, we identified potential genes associated with CRC metastasis. The functional studies focusing on SERPINA3/miR-137-3p/miR-296-5p further consolidated its role in regulating CRC progression. Our findings provide insights into novel mechanisms underlying CRC metastasis and might contribute to the development of effective treatment strategies. However, the role of SERPINA3/miR-137-3p/miR-296-5p signaling in CRC still requires further investigation.


Assuntos
Neoplasias Colorretais , MicroRNAs , Serpinas , Humanos , Transcriptoma , Caspase 3/genética , Caspase 3/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Serpinas/genética , Serpinas/metabolismo
13.
J Endocr Soc ; 7(6): bvad049, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37153110

RESUMO

HAND2 is a critical mediator of progesterone receptor signaling in endometrium. Silencing of HAND2 expression is associated with female infertility and endometrial cancers. We recently observed that lncRNA HAND2-AS1 and HAND2 are expressed coordinately in human endometrial stromal cells. To investigate involvement of HAND2-AS1 and HAND2 in pathogenesis of endometriosis, we employed immunohistochemistry, in situ hybridization, and quantitative real-time PCR to assess their expression in normal endometrium and the ectopic lesions obtained from patients with ovarian endometriosis. HAND2 promoter methylation was also monitored in these samples. Our results revealed that HAND2 and HAND2-AS1 expression levels were reduced but promoter methylation was enhanced significantly in ectopic endometrium when compared with the normal controls. Fluorescence in situ hybridization showed that HAND-AS1 is predominantly localized in the nuclei of endometrial stromal cells in contrast to the cytoplasmic distribution in epithelial cell compartment. To further investigate regulation of HAND2 expression by HAND2-AS1, HAND2-AS1 was silenced or overexpressed in human endometrial stromal cells. Our studies showed that expression levels of HAND2 and its direct target IL15 were attenuated markedly in HAND2-AS1 silenced cells but enhanced significantly in the overexpressed human endometrial stromal cells. Silencing of HAND2-AS1 also impaired endometrial stromal cell decidualization as indicated by downregulation of decidual biomarkers IGFBP1 and PRL. In addition, HAND2 promoter methylation was also enhanced upon HAND2-AS1 silencing. RNA immunoprecipitation studies further revealed that HAND2-AS1 is capable of binding to DNA methyltransferase DNMT1, indicating that HAND2-AS1 governs HAND2 expression epigenetically involving DNA methylation.

14.
Front Neurosci ; 17: 1099911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025376

RESUMO

Objectives: To quantitatively measure the T1 value, T2 value, proton density (PD) value, and cerebral blood flow (CBF) in young and middle-aged primary insomnia (PI) patients, and analyze the correlations between relaxation times, PD, and CBF to explore potential brain changes. Methods: Cranial magnetic resonance (MR) images of 44 PI patients and 30 healthy subjects were prospectively collected for analysis. The T1, T2, PD, and CBF values of the frontal lobe, parietal lobe, temporal lobe, and occipital lobe were independently measured using three-dimensional arterial spin labeling (3D-ASL), synthetic magnetic resonance imaging (syMRI) and a whole-brain automatic segmentation method. The differences of these imaging indices were compared between PI patients and healthy subjects. Follow-up MR images were obtained from PI patients after 6 months to compare with pre-treatment images. The Wilcoxon signed rank test and Spearman rank were used for statistical analysis. Results: Bilateral CBF asymmetry was observed in 38 patients, with significant differences in both the T2 value and CBF between the four lobes of the brain (p < 0.01). However, no significant difference was found in the T1 and PD values between the bilateral lobes. A negative correlation was found between CBF and T2 values in the right four lobes of patients with primary insomnia (PI). During follow-up examinations, five PI patients showed a disappearance of insomnia symptoms and a decrease in CBF in both brain lobes. Conclusion: Insomnia symptoms may be associated with high CBF, and most PI patients have higher CBF and lower T2 values in the right cerebral hemispheres. The right hemisphere appears to play a critical role in the pathophysiology of PI. The 3D-ASL and syMRI technologies can provide a quantitative imaging basis for investigating the brain conditions and changes in young and middle-aged PI patients.

15.
Plants (Basel) ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432830

RESUMO

The plant-specific SHI-related sequence (SRS) family of transcription factors plays a vital role in growth regulation, plant development, phytohormone biosynthesis, and stress response. However, the genome-wide identification and role in the abiotic stress-related functions of the SRS gene family were not reported in white sweet clover (Melilotus albus). In this study, nine M. albus SRS genes (named MaSRS01-MaSRS09) were identified via a genome-wide search method. All nine genes were located on six out of eight chromosomes in the genome of M. albus and duplication analysis indicated eight segmentally duplicated genes in the MaSRS family. These MaSRS genes were classified into six groups based on their phylogenetic relationships. The gene structure and motif composition results indicated that MaSRS members in the same group contained analogous intron/exon and motif organizations. Further, promoter region analysis of MaSRS genes uncovered various growth, development, and stress-responsive cis-acting elements. Protein interaction networks showed that each gene has both functions of interacting with other genes and members within the family. Moreover, real-time quantitative PCR was also performed to verify the expression patterns of nine MaSRS genes in the leaves of M. albus. The results showed that nine MaSRSs were up- and down-regulated at different time points after various stress treatments, such as salinity, low-temperature, salicylic acid (SA), and methyl jasmonate (MeJA). This is the first systematic study of the M. albus SRS gene family, and it can serve as a strong foundation for further elucidation of the stress response and physiological improvement of the growth functions in M. albus.

16.
Diagnostics (Basel) ; 11(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34829484

RESUMO

PURPOSE: To quantitatively investigate the correlation between liver fat content and hepatic perfusion disorders (HPD) after radiofrequency ablation (RFA) for liver cancer using magnetic resonance imaging (MRI)-determined proton density fat fraction (PDFF). MATERIALS AND METHODS: A total of 150 liver cancer patients underwent liver MRI examination within one month after RFA and at four months after RFA. According to the liver fat content, they were divided into non-, mild, moderate, and severe fatty liver groups. The liver fat content and hepatic perfusion disorders were determined using PDFF images and dynamic contrast-enhanced MRI images. The relationship between the liver fat content and HPD was investigated. RESULTS: At the first postoperative MRI examination, the proportion of patients in the nonfatty liver group with hyperperfused foci (11.11%) was significantly lower than that in the mild (30.00%), moderate (42.86%), and severe fatty liver (56.67%) groups (p < 0.05), whereas the proportions of patients with hypoperfused foci (6.67%, 7.5%, 5.71%, and 6.67%, respectively) were not significantly different among the four groups (p > 0.05). In the nonfatty liver group, the liver fat content was not correlated with hyperperfusion abnormalities or hypoperfusion abnormalities. By contrast, in the three fatty liver groups, the liver fat content was correlated with hyperperfusion abnormalities but was not correlated with hypoperfusion abnormalities. At the second postoperative MRI examination, six patients in the nonfatty liver group were diagnosed with fatty liver, including two patients with newly developed hyperperfusion abnormalities and one patient whose hypoperfusion abnormality remained the same as it was in the first postoperative MRI examination. CONCLUSION: There was a high correlation between the liver fat content and hyperperfusion abnormalities after RFA for liver cancer. The higher the liver fat content was, the higher the was risk of hyperperfusion abnormalities. However, there was little correlation between liver fat content and hypoperfusion abnormalities, and the increase in postoperative liver fat content did not induce or alter the presence of hypoperfused foci.

17.
Cancer Manag Res ; 12: 13241-13257, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33380832

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common human malignant tumors. The prognosis of HCC patients is still unsatisfying. In this study, we performed the integrated bioinformatics analysis to identify potential biomarkers and biological pathways in HCC. METHODS: Gene expression profiles were obtained from the Gene Expression Omnibus database (GSE55048, GSE55758, and GSE56545) for the screening of the common differentially expressed genes (DEGs) between HCC tissues and matched non-tumor tissues. DEGs were subjected to Gene Ontology, KEGG pathway, and Reactome pathway analysis. The hub genes were identified by using protein-protein interaction (PPI) network analysis. The hub genes in HCC were further subjected to overall survival analysis of HCC patients. The hub genes were further validated by in vitro functional assays. RESULTS: A total of 544 common differentially expressed genes were screened from three datasets. Gene Ontology, KEGG and Reactome analysis results showed that DEGs are significantly associated with the biological process of cell cycle, cell division, and DNA replication. PPI network analysis identified 20 hub genes from the DEGs. These hub genes except CENPE were all significantly up-regulated in the HCC tissues when compared to non-tumor tissues. The Kaplan-Meier survival analysis results showed that the high expression of the 20 hub genes was associated with shorter survival of the HCC patients. Further validation studies showed that knockdown of KIF14 and KIF23 both suppressed the proliferative potential, increased the caspase-3/-7 activity, up-regulated Bax expression, and promoted the invasive and migratory abilities in the HCC cells. In addition, knockdown of KIF14 and KIF23 enhanced chemosensitivity to cisplatin and sorafenib in the HCC cells. Finally, the high expression of KIF14 and KIF23 was associated with shorter progression-free survival, recurrence-free survival, and disease-specific survival of patients with HCC. CONCLUSION: In conclusion, the present study performed the integrated bioinformatics analysis and showed that KIF14 and KIF23 silence attenuated cell proliferation, invasion, and migration, and promoted chemosensitivity of HCC cells. KIF14 and KIF23 may serve as potential biomarkers for predicting the worse prognosis of patients with HCC.

18.
Cancer Manag Res ; 12: 9609-9619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116820

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common human malignant tumors. The prognosis of HCC patients is still unsatisfying. Thus, it is of great importance to identify novel molecules and functional pathways associated with the pathophysiology of HCC. In this study, we performed the integrated bioinformatics analysis and experiment validation to identify novel biomarkers in the prognosis and progression of HCC. MATERIALS AND METHODS: Gene expression profiles were obtained from Gene Expression Omnibus database (GSE33294) for the screening of the differentially expressed genes (DEGs) between HCC tissues and matched non-tumor tissues. The DEGs were subjected to Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Set Enrichment Analysis (GSEA). The key genes in HCC were further subjected to overall survival analysis of HCC patients. The in vitro functional studies were performed to validate the biological functions of the key gene in HCC cell progression. RESULTS: A total of 2,334 DEGs were screened from GSE33294 dataset, including 1,120 up-regulated and 1,214 down-regulated genes. GO, KEGG and GSEA results showed that DEGs are significantly associated with the biological process of cell cycle, cell division and DNA replication. The Kaplan-Meier survival analysis results showed that the key genes from the minichromosome maintenance protein complex (MCM) family including MCM8, MCM10, MCM2, MCM3, MCM4, MCM6 and MCM7 were significantly correlated with the overall survival of the HCC patients. Further validation studies showed that MCM10 was significantly up-regulated in the HCC cell lines, and knockdown of MCM10 significantly suppressed cell proliferation as determined by the cell counting kit-8 and BrdU incorporation assays and increased the caspase-3 activity of HCC cells. CONCLUSION: The comprehensive bioinformatics analysis identified several key genes that were associated with the prognosis of HCC patients. The validation study results indicated that MCM10 may be an important predictor for poorer prognosis of HCC patients and may act as an oncogene to promote HCC cell progression.

19.
Endocrinology ; 160(7): 1631-1644, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125045

RESUMO

Endometrial stromal cells differentiate to form decidual cells in a process known as decidualization, which is critical for embryo implantation and successful establishment of pregnancy. We previously reported that bone morphogenetic protein 2 (BMP2) mediates uterine stromal cell differentiation in mice and in humans. To identify the downstream target(s) of BMP2 signaling during decidualization, we performed gene-expression profiling of mouse uterine stromal cells, treated or not treated with recombinant BMP2. Our studies revealed that expression of Msx2, a member of the mammalian Msx homeobox gene family, was markedly upregulated in response to exogenous BMP2. Interestingly, conditional ablation of Msx2 in the uterus failed to prevent a decidual phenotype, presumably because of functional compensation of Msx2 by Msx1, a closely related member of the Msx family. Indeed, in Msx2-null uteri, the level of Msx1 expression in the stromal cells was markedly elevated. When conditional, tissue-specific ablation of both Msx1 and Msx2 was accomplished in the mouse uterus, a dramatically impaired decidual response was observed. In the absence of both Msx1 and Msx2, uterine stromal cells were able to proliferate, but they failed to undergo terminal differentiation. In parallel experiments, addition of BMP2 to human endometrial stromal cell cultures led to a robust enhancement of MSX1 and MSX2 expression and stimulated the differentiation process. Attenuation of MSX1 and MSX2 expression by small interfering RNAs greatly reduced human stromal differentiation in vitro, indicating a conservation of their roles as key mediators of BMP2-induced decidualization in mice and women.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição MSX1/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Endométrio/citologia , Endométrio/efeitos dos fármacos , Feminino , Proteínas de Homeodomínio/genética , Humanos , Fator de Transcrição MSX1/genética , Camundongos , Camundongos Knockout , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
20.
Aging (Albany NY) ; 11(19): 8169-8182, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581133

RESUMO

Two-pore-domain (KCNK, K2P) K+ channels are transmembrane protein complexes that control the flow of ions across biofilms, which underlie many essential cellular functions. Because KCNK family members are known to contribute to tumorigenesis in various types of cancer, we hypothesized that they might be differentially expressed in hepatocellular carcinoma (HCC) cells as compared to healthy tissue and serve as diagnostic or prognostic biomarkers. We tested this hypothesis through bioinformatic analyses of publicly available data for the expression of various KCNK subunits in HCC. We observed reduced expression of KCNK2, KCNK15, and KCNK17 in liver cancer, as well as overexpression of KCNK9, all of which correlated with a better prognosis for HCC patients per survival analyses. Moreover, ROC curves indicated that KCNK2, KCNK9, KCNK15, and KCNK17 levels could be used as a diagnostic biomarker for HCC. Finally, our western blot and qRT-PCR results were consistent with those obtained from bioinformatic analyses. Taken together, these results suggest that KCNK2, KCNK9, KCNK15, and KCNK17 could serve as potential diagnostic and prognostic biomarkers of HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Canais de Potássio de Domínios Poros em Tandem/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA