Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 605(7908): 76-83, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508775

RESUMO

Living cilia stir, sweep and steer via swirling strokes of complex bending and twisting, paired with distinct reverse arcs1,2. Efforts to mimic such dynamics synthetically rely on multimaterial designs but face limits to programming arbitrary motions or diverse behaviours in one structure3-8. Here we show how diverse, complex, non-reciprocal, stroke-like trajectories emerge in a single-material system through self-regulation. When a micropost composed of photoresponsive liquid crystal elastomer with mesogens aligned oblique to the structure axis is exposed to a static light source, dynamic dances evolve as light initiates a travelling order-to-disorder transition front, transiently turning the structure into a complex evolving bimorph that twists and bends via multilevel opto-chemo-mechanical feedback. As captured by our theoretical model, the travelling front continuously reorients the molecular, geometric and illumination axes relative to each other, yielding pathways composed from series of twisting, bending, photophobic and phototropic motions. Guided by the model, here we choreograph a wide range of trajectories by tailoring parameters, including illumination angle, light intensity, molecular anisotropy, microstructure geometry, temperature and irradiation intervals and duration. We further show how this opto-chemo-mechanical self-regulation serves as a foundation for creating self-organizing deformation patterns in closely spaced microstructure arrays via light-mediated interpost communication, as well as complex motions of jointed microstructures, with broad implications for autonomous multimodal actuators in areas such as soft robotics7,9,10, biomedical devices11,12 and energy transduction materials13, and for fundamental understanding of self-regulated systems14,15.

2.
Nature ; 592(7854): 386-391, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854248

RESUMO

The fundamental topology of cellular structures-the location, number and connectivity of nodes and compartments-can profoundly affect their acoustic1-4, electrical5, chemical6,7, mechanical8-10 and optical11 properties, as well as heat1,12, fluid13,14 and particle transport15. Approaches that harness swelling16-18, electromagnetic actuation19,20 and mechanical instabilities21-23 in cellular materials have enabled a variety of interesting wall deformations and compartment shape alterations, but the resulting structures generally preserve the defining connectivity features of the initial topology. Achieving topological transformation presents a distinct challenge for existing strategies: it requires complex reorganization, repacking, and coordinated bending, stretching and folding, particularly around each node, where elastic resistance is highest owing to connectivity. Here we introduce a two-tiered dynamic strategy that achieves systematic reversible transformations of the fundamental topology of cellular microstructures, which can be applied to a wide range of materials and geometries. Our approach requires only exposing the structure to a selected liquid that is able to first infiltrate and plasticize the material at the molecular scale, and then, upon evaporation, form a network of localized capillary forces at the architectural scale that 'zip' the edges of the softened lattice into a new topological structure, which subsequently restiffens and remains kinetically trapped. Reversibility is induced by applying a mixture of liquids that act separately at the molecular and architectural scales (thus offering modular temporal control over the softening-evaporation-stiffening sequence) to restore the original topology or provide access to intermediate modes. Guided by a generalized theoretical model that connects cellular geometries, material stiffness and capillary forces, we demonstrate programmed reversible topological transformations of various lattice geometries and responsive materials that undergo fast global or localized deformations. We then harness dynamic topologies to develop active surfaces with information encryption, selective particle trapping and bubble release, as well as tunable mechanical, chemical and acoustic properties.

3.
Proc Natl Acad Sci U S A ; 119(43): e2211042119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252006

RESUMO

Various forms of ecological monitoring and disease diagnosis rely upon the detection of amphiphiles, including lipids, lipopolysaccharides, and lipoproteins, at ultralow concentrations in small droplets. Although assays based on droplets' wettability provide promising options in some cases, their reliance on the measurements of surface and bulk properties of whole droplets (e.g., contact angles, surface tensions) makes it difficult to monitor trace amounts of these amphiphiles within small-volume samples. Here, we report a design principle in which self-assembled monolayer-functionalized microstructured surfaces coated with silicone oil create locally disordered regions within a droplet's contact lines to effectively concentrate amphiphiles within the areas that dominate the droplet static friction. Remarkably, such surfaces enable the ultrasensitive, naked-eye detection of amphiphiles through changes in the droplets' sliding angles, even when the concentration is four to five orders of magnitude below their critical micelle concentration. We develop a thermodynamic model to explain the partitioning of amphiphiles at the contact line by their cooperative association within the disordered, loosely packed regions of the self-assembled monolayer. Based on this local analyte concentrating effect, we showcase laboratory-on-a-chip surfaces with positionally dependent pinning forces capable of both detecting industrially and biologically relevant amphiphiles (e.g., bacterial endotoxins), as well as sorting aqueous droplets into discrete groups based on their amphiphile concentrations. Furthermore, we demonstrate that the sliding behavior of amphiphile-laden aqueous droplets provides insight into the amphiphile's effective length, thereby allowing these surfaces to discriminate between analytes with highly disparate molecular sizes.


Assuntos
Micelas , Óleos de Silicone , Lipopolissacarídeos , Tensão Superficial , Água , Molhabilidade
4.
J Nat Prod ; 85(3): 599-606, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-34957832

RESUMO

Nine new cadinane sesquiterpenoids, alanenses A-I (1-9), were isolated from the leaves of Alangium chinense together with three previously reported analogues (10-12). The structures of these molecules were elucidated by interpretation of spectroscopic and spectrometric data. Absolute configurations were established by the comparison of experimental and calculated ECD data, chemical degradation studies for sugar moieties, and a single-crystal X-ray diffraction analysis. Compounds 1 and 2 were isolated as racemates, and enantiopurification was achieved by chiral HPLC. Compounds 3-5 are glycosylated cadinanes bearing a ß-d-glucose unit, while compounds 6-9 incorporate a hydroxymethyl group in either the free form or additional ring fusion. The structure of compound 11 was originally misassigned and later revised using additional NMR data. The corrected structure is here supported by X-ray single-crystal analysis. Compounds 1 and 2 inhibit spontaneous calcium channel oscillations at low micromolar concentrations.


Assuntos
Alangiaceae , Sesquiterpenos , Alangiaceae/química , Sinalização do Cálcio , Glicosídeos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Sesquiterpenos Policíclicos , Sesquiterpenos/química
5.
Proc Natl Acad Sci U S A ; 115(51): 12950-12955, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30514819

RESUMO

Dynamic functions of biological organisms often rely on arrays of actively deformable microstructures undergoing a nearly unlimited repertoire of predetermined and self-regulated reconfigurations and motions, most of which are difficult or not yet possible to achieve in synthetic systems. Here, we introduce stimuli-responsive microstructures based on liquid-crystalline elastomers (LCEs) that display a broad range of hierarchical, even mechanically unfavored deformation behaviors. By polymerizing molded prepolymer in patterned magnetic fields, we encode any desired uniform mesogen orientation into the resulting LCE microstructures, which is then read out upon heating above the nematic-isotropic transition temperature (TN-I) as a specific prescribed deformation, such as twisting, in- and out-of-plane tilting, stretching, or contraction. By further introducing light-responsive moieties, we demonstrate unique multifunctionality of the LCEs capable of three actuation modes: self-regulated bending toward the light source at T < TN-I, magnetic-field-encoded predetermined deformation at T > TN-I, and direction-dependent self-regulated motion toward the light at T > TN-I We develop approaches to create patterned arrays of microstructures with encoded multiple area-specific deformation modes and show their functions in responsive release of cargo, image concealment, and light-controlled reflectivity. We foresee that this platform can be widely applied in switchable adhesion, information encryption, autonomous antennae, energy harvesting, soft robotics, and smart buildings.

6.
BMC Vet Res ; 16(1): 237, 2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32653000

RESUMO

BACKGROUND: Effects of Saccharomyces cerevisiae fermentation products (SCFP) on rumen microbiota were determined in vitro and in vivo under a high and a depressed pH. The in vitro trial determined the effects of Original XPC and NutriTek (Diamond V, Cedar Rapids, IA) at doses of 1.67 and 2.33 g/L, respectively, on the abundances of rumen bacteria under a high pH (> 6.3) and a depressed pH (5.8-6.0) using quantitative PCR (qPCR). In the in vivo trial eight rumen-cannulated lactating dairy cows were used in a cross-over design. Cows were randomly assigned to SCFP treatments (Original XPC, Diamond V, Cedar Rapids, IA) or control (No SCFP) before two 5-week experimental periods. During the second period, SCFP treatments were reversed. Cows on the SCFP treatment were supplemented with 14 g/d of SCFP and 126 g/d of ground corn. Other cows received 140 g/d ground corn. During the first 4 wk. of each period, cows received a basal diet containing 153 g/kg of starch. During week 5 of both periods, the rumen pH was depressed by a SARA challenge. This included replacing 208 g/kg of the basal diet with pellets of ground wheat and barley, resulting in a diet that contained 222 g/kg DM of starch. Microbial communities in rumen liquid digesta were examined by pyrosequencing, qPCR, and shotgun metagenomics. RESULTS: During the in vitro experiment, XPC and NutriTek increased the relative abundances of Ruminococcus flavefaciens, and Fibrobacter succinogenes determined at both the high and the depressed pH, with NutriTek having the largest effect. The relative abundances of Prevotella brevis, R. flavefaciens, ciliate protozoa, and Bifidobacterium spp. were increased by XPC in vivo. Adverse impacts of the in vivo SARA challenge included reductions of the richness and diversity of the rumen microbial community, the abundances of Bacteroidetes and ciliate protozoa in the rumen as determined by pyrosequencing, and the predicted functionality of rumen microbiota as determined by shotgun metagenomics. These reductions were attenuated by XPC supplementation. CONCLUSIONS: The negative effects of grain-based SARA challenges on the composition and predicted functionality of rumen microbiota are attenuated by supplementation with SCFP.


Assuntos
Acidose/veterinária , Doenças dos Bovinos/dietoterapia , Rúmen/microbiologia , Saccharomyces cerevisiae , Acidose/dietoterapia , Ração Animal/análise , Animais , Bovinos , Cilióforos , Dieta/veterinária , Feminino , Fermentação , Microbioma Gastrointestinal , Concentração de Íons de Hidrogênio , Lactação , RNA Ribossômico 16S , Rúmen/química , Gastropatias/dietoterapia , Gastropatias/microbiologia , Gastropatias/veterinária
7.
Microb Ecol ; 74(2): 485-495, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28175972

RESUMO

The effects of a grain-based subacute ruminal acidosis (SARA) challenge on bacteria in the rumen and feces of lactating dairy cows were determined. Six lactating, rumen-cannulated Danish Holstein cows were used in a cross-over study with two periods. Periods included two cows on a control diet and two cows on a SARA challenge. The control diet was a total mixed ration containing 45.5% dry matter (DM), 43.8% DM neutral detergent fiber, and 19.6% DM starch. The SARA challenge was conducted by gradually substituting the control diet with pellets containing 50% wheat and 50% barley over 3 days to reach a diet containing 55.6% DM, 31.3% DM neutral detergent fiber, and 31.8% DM starch, which was fed for four more days. Rumen fluid samples were collected at day 7 and 10 of experimental periods. Feces samples were collected on days 8 and 10 of these periods. Extracted DNA from the rumen and feces samples was analyzed to assess their bacterial communities using MiSeq Illumina sequencing of the V4 region of the 16S rRNA gene. The induction of SARA reduced the richness, diversity, and stability of bacterial communities and resulted in distinctly different microbiota in the rumen and feces. Bacteroidetes and Firmicutes were the most abundant phyla and, combined, they represented 76.9 and 94.4% of the bacterial community in the rumen fluid and the feces, respectively. Only the relative abundance of Firmicutes in the rumen was increased by the SARA challenge. In rumen fluid and feces, the abundances of nine out of the 90 and 25 out of the 89 taxa, respectively, were affected by the challenge. Hence, SARA challenge altered the composition of the bacterial community at the lower taxonomical level in the feces and therefore also likely in the hindgut, as well as in the rumen. However, only reductions in the bacterial richness and diversity in the rumen fluid and feces were in agreement with those of other studies and had a biological basis. Although the composition of the bacterial community of the feces was affected by the SARA challenge, bacterial taxa in the feces that can be used for accurate and non-invasive diagnosis of SARA could not be identified.


Assuntos
Acidose/veterinária , Ração Animal , Doenças dos Bovinos/microbiologia , Microbiota , Rúmen/microbiologia , Acidose/microbiologia , Animais , Bovinos , Estudos Cross-Over , Dieta , Fezes/microbiologia , Feminino , Concentração de Íons de Hidrogênio , Lactação , RNA Ribossômico 16S/genética
8.
BMC Vet Res ; 12: 29, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26896166

RESUMO

BACKGROUND: The aim of this study was to investigate the effects of two feed supplements on rumen bacterial communities of heifers fed a high grain diet. Six Holstein-Friesian heifers received one of the following dietary treatments according to a Latin square design: no supplement (control, C), 60 g/day of fumarate-malate (organic acid, O) and 100 g/day of polyphenol-essential oil (P). Rumen fluid was analyzed to assess the microbial population using Illumina sequencing and quantitative real time PCR. RESULTS: The P treatment had the highest number of observed species (P < 0.10), Chao1 index (P < 0.05), abundance based coverage estimated (ACE) (P < 0.05), and Fisher's alpha diversity (P < 0.10). The O treatment had intermediate values between C and P treatments with the exception of the Chao1 index. The PCoA with unweighted Unifrac distance showed a separation among dietary treatments (P = 0.09), above all between the C and P (P = 0.05). The O and P treatments showed a significant increase of the family Christenenellaceae and a decline of Prevotella brevis compared to C. Additionally, the P treatment enhanced the abundance of many taxa belonging to Bacteroidetes, Firmicutes and Tenericutes phyla due to a potential antimicrobial activity of flavonoids that increased competition among bacteria. CONCLUSIONS: Organic acid and polyphenols significantly modified rumen bacterial populations during high-grain feeding in dairy heifers. In particular the polyphenol treatment increased the richness and diversity of rumen microbiota, which are usually high in conditions of physiological rumen pH and rumen function.


Assuntos
Ração Animal , Ácidos Dicarboxílicos/farmacologia , Suplementos Nutricionais , Metagenômica , Microbiota/efeitos dos fármacos , Polifenóis/farmacologia , Rúmen/microbiologia , Animais , Biodiversidade , Bovinos , Grão Comestível , Rúmen/efeitos dos fármacos
9.
BMC Vet Res ; 10: 277, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25425091

RESUMO

BACKGROUND: The aim of this study was to determine the ability of two feed additives, a fumarate-malate (FM) and a polyphenol-essential oil mixture (PM), in attenuating the drop of ruminal pH and the metabolic and immune response resulting from an excessively high grain diet. Six heifers were used in a 3 × 3 Latin square experiment and fed a low starch (LS) diet for 14 d, followed by a high starch (HS) diet for 8 d (NDF 33.6%, starch 30.0% DM). In the last 5 days of each period, barley meal was added to decrease rumen pH. During HS feeding all animals were randomly assigned to one of the following three dietary treatments: no supplement/control (CT), a daily dose of 60 g/d of FM, or 100 g/d of PM. Reticular pH was continuously recorded using wireless boluses. On d 21 of each period, rumen fluid was collected by rumenocentesis (1400 h), together with blood (0800 h) and fecal samples (0800, 1400, and 2100 h). RESULTS: The correlation coefficient of pH values obtained using the boluses and rumenocentesis was 0.83. Compared with CT and PM, the FM treatment led to a lower DMI. Nadir pH was lowest during CT (5.40, 5.69, and 5.62 for CT, FM and PM, respectively), confirming the effectiveness of both supplements in reducing the pH drop caused by high grain feeding. This result was confirmed by the highest average time spent daily below 5.6 pH (199, 16 and 18 min/d) and by the highest acetate to propionate ratio of the CT fed heifers. The PM decreased the concentrations of neutrophils (2.9, 3.2, and 2.8 10(9)/L) and acute phase proteins: SAA (37.1, 28.6 and 20.1 µg/mL), LBP (4.1, 3.8, and 2.9 µg/mL), and Hp (675, 695 and 601 µg/mL). Free lipopolysaccharides (LPS) were detected in blood and feces, but their concentrations were not affected by treatments, as the remaining blood variables. CONCLUSIONS: Data suggest that both additives could be useful in attenuating the effects of excessive grain feeding on rumen pH, but the PM supplement was more effective than FM in reducing the inflammatory response compared to CT.


Assuntos
Reação de Fase Aguda/veterinária , Doenças dos Bovinos/prevenção & controle , Ácidos Dicarboxílicos/uso terapêutico , Dieta/veterinária , Aditivos Alimentares/uso terapêutico , Polifenóis/uso terapêutico , Retículo/efeitos dos fármacos , Reação de Fase Aguda/prevenção & controle , Animais , Bovinos , Doenças dos Bovinos/etiologia , Dieta/efeitos adversos , Ingestão de Alimentos , Grão Comestível/efeitos adversos , Feminino , Fumaratos/uso terapêutico , Concentração de Íons de Hidrogênio , Malatos/uso terapêutico , Retículo/metabolismo , Rúmen/efeitos dos fármacos , Rúmen/metabolismo
10.
Lab Chip ; 24(17): 4073-4084, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39115160

RESUMO

Microactuators, capable of executing tasks typically repetitive, hazardous, or impossible for humans, hold great promise across fields such as precision medicine, environmental remediation, and swarm intelligence. However, intricate motions of microactuators normally require high complexity in design, making it increasingly challenging to realize at small scales using existing fabrication techniques. Taking inspiration from the hierarchical-anisotropy principle found in nature, we program liquid crystalline elastomer (LCE) microactuators with multimodal actuation tailored to their molecular, shape, and architectural anisotropies at (sub)nanometer, micrometer, and (sub)millimeter scales, respectively. Our strategy enables diverse deformations with individual LCE microstructures, including expanding, contracting, twisting, bending, and unwinding, as well as re-programmable shape transformations of assembled LCE architectures with negative Poisson's ratios, locally adjustable actuation, and changing from two-dimensional (2D) to three-dimensional (3D) structures. Furthermore, we design tetrahedral microactuators with well-controlled mobility and precise manipulation of both solids and liquids in various environments. This study provides a paradigm shift in the development of microactuators, unlocking a vast array of complexities achievable through manipulation at each hierarchical level of anisotropy.

11.
Nat Commun ; 15(1): 1295, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346953

RESUMO

Two-dimensional (2D) superlattices, formed by stacking sublattices of 2D materials, have emerged as a powerful platform for tailoring and enhancing material properties beyond their intrinsic characteristics. However, conventional synthesis methods are limited to pristine 2D material sublattices, posing a significant practical challenge when it comes to stacking chemically modified sublattices. Here we report a chemical synthesis method that overcomes this challenge by creating a unique 2D graphene superlattice, stacking graphene sublattices with monodisperse, nanometer-sized, square-shaped pores and strategically doped elements at the pore edges. The resulting graphene superlattice exhibits remarkable correlations between quantum phases at both the electron and phonon levels, leading to diverse functionalities, such as electromagnetic shielding, energy harvesting, optoelectronics, and thermoelectrics. Overall, our findings not only provide chemical design principles for synthesizing and understanding functional 2D superlattices but also expand their enhanced functionality and extensive application potential compared to their pristine counterparts.

12.
Acc Mater Res ; 4(12): 1008-1019, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38148997

RESUMO

Synthetic structures that undergo controlled movement are crucial building blocks for developing new technologies applicable to robotics, healthcare, and sustainable self-regulated materials. Yet, programming motion is nontrivial, and particularly at the microscale it remains a fundamental challenge. At the macroscale, movement can be controlled by conventional electric, pneumatic, or combustion-based machinery. At the nanoscale, chemistry has taken strides in enabling molecularly fueled movement. Yet in between, at the microscale, top-down fabrication becomes cumbersome and expensive, while bottom-up chemical self-assembly and amplified molecular motion does not reach the necessary sophistication. Hence, new approaches that converge top-down and bottom-up methods and enable motional complexity at the microscale are urgently needed. Synthetic anisotropic materials (e.g., liquid crystalline elastomers, LCEs) with encoded molecular anisotropy that are shaped into arbitrary geometries by top-down fabrication promise new opportunities to implement controlled actuation at the microscale. In such materials, motional complexity is directly linked to the built-in molecular anisotropy that can be "activated" by external stimuli. So far, encoding the desired patterns of molecular directionality has relied mostly on either mechanical or surface alignment techniques, which do not allow the decoupling of molecular and geometric features, severely restricting achievable material shapes and thus limiting attainable actuation patterns, unless complex multimaterial constructs are fabricated. Electromagnetic fields have recently emerged as possible alternatives to provide 3D control over local anisotropy, independent of the geometry of a given 3D object. The combination of magnetic alignment and soft lithography, in particular, provides a powerful platform for the rapid, practical, and facile production of microscale soft actuators with field-defined local anisotropy. Recent work has established the feasibility of this approach with low magnetic field strengths (in the lower mT range) and comparably simple setups used for the fabrication of the microactuators, in which magnetic fields can be engineered through arrangement of permanent magnets. This workflow gives access to microstructures with unusual spatial patterning of molecular alignment and has enabled a multitude of nontrivial deformation types that would not be possible to program by any other means at the micron scale. A range of "activating" stimuli can be used to put these structures in motion, and the type of the trigger plays a key role too: directional and dynamic stimuli (such as light) make it possible to activate the patterned anisotropic material locally and transiently, which enables one to achieve and further program motional complexity and communication in microactuators. In this Account, we will discuss recent advances in magnetic alignment of molecular anisotropy and its use in soft lithography and related fabrication approaches to create LCE microactuators. We will examine how design choices-from the molecular to the fabrication and the operational levels-control and define the achievable LCE deformations. We then address the role of stimuli in realizing the motional complexity and how one can engineer feedback within and communication between microactuator arrays fabricated by soft lithography. Overall, we outline emerging strategies that make possible a completely new approach to designing for desired sets of motions of active, microscale objects.

13.
Nat Commun ; 14(1): 1982, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031210

RESUMO

Harvesting largely ignored and wasted electromagnetic (EM) energy released by electronic devices and converting it into direct current (DC) electricity is an attractive strategy not only to reduce EM pollution but also address the ever-increasing energy crisis. Here we report the synthesis of nanoparticle-templated graphene with monodisperse and staggered circular nanopores enabling an EM-heat-DC conversion pathway. We experimentally and theoretically demonstrate that this staggered nanoporous structure alters graphene's electronic and phononic properties by synergistically manipulating its intralayer nanostructures and interlayer interactions. The staggered circular nanoporous graphene exhibits an anomalous combination of properties, which lead to an efficient absorption and conversion of EM waves into heat and in turn an output of DC electricity through the thermoelectric effect. Overall, our results advance the fundamental understanding of the structure-property relationships of ordered nanoporous graphene, providing an effective strategy to reduce EM pollution and generate electric energy.

14.
Sci Adv ; 9(27): eadg7943, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37406110

RESUMO

An understanding of protein conformational ensembles is essential for revealing the underlying mechanisms of interpeptide recognition and association. However, experimentally resolving multiple simultaneously existing conformational substates remains challenging. Here, we report the use of scanning tunneling microscopy (STM) to analyze the conformational substate ensembles of ß sheet peptides with a submolecular resolution (in-plane <2.6 Å). We observed ensembles of more than 10 conformational substates (with free energy fluctuations between several kBTs) in peptide homoassemblies of keratin (KRT) and amyloidal peptides (-5Aß42 and TDP-43 341-357). Furthermore, STM reveals a change in the conformational ensemble of peptide mutants, which is correlated with the macroscopic properties of peptide assemblies. Our results demonstrate that the STM-based single-molecule imaging can capture a thorough picture of the conformational substates with which to build an energetic landscape of interconformational interactions and can rapidly screen conformational ensembles, which can complement conventional characterization techniques.


Assuntos
Amiloide , Peptídeos , Conformação Proteica em Folha beta , Peptídeos/química , Conformação Proteica , Entropia
15.
ACS Cent Sci ; 9(7): 1480-1487, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37521785

RESUMO

Deciphering the conformations and interactions of peptides in their assemblies offers a basis for guiding the rational design of peptide-assembled materials. Here we report the use of scanning tunneling microscopy (STM), a single-molecule imaging method with a submolecular resolution, to distinguish 18 types of coexisting conformational substates of the ß-strand of the 8-37 segment of human islet amyloid polypeptide (hIAPP 8-37). We analyzed the pairwise peptide-peptide interactions in the hIAPP 8-37 assembly and found 82 interconformation interactions within a free energy difference of 3.40 kBT. Besides hIAPP 8-37, this STM method validates the existence of multiple conformations of other ß-sheet peptide assemblies, including mutated hIAPP 8-37 and amyloid-ß 42. Overall, the results reported in this work provide single-molecule experimental insights into the conformational ensemble and interpeptide interactions in the ß-sheet peptide assembly.

16.
Adv Mater ; 33(42): e2105024, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34473379

RESUMO

Geometric reconfigurations in cellular structures have recently been exploited to realize adaptive materials with applications in mechanics, optics, and electronics. However, the achievable symmetry breakings and corresponding types of deformation and related functionalities have remained rather limited, mostly due to the fact that the macroscopic geometry of the structures is generally co-aligned with the molecular anisotropy of the constituent material. To address this limitation, cellular microstructures are fabricated out of liquid crystalline elastomers (LCEs) with an arbitrary, user-defined liquid crystal (LC) mesogen orientation encrypted by a weak magnetic field. This platform enables anisotropy to be programmed independently at the molecular and structural levels and the realization of unprecedented director-determined symmetry breakings in cellular materials, which are demonstrated by both finite element analyses and experiments. It is illustrated that the resulting mechanical reconfigurations can be harnessed to program microcellular materials with switchable and direction-dependent frictional properties and further exploit "area-specific" deformation patterns to locally modulate transmitted light and precisely guide object movement. As such, the work provides a clear route to decouple anisotropy at the materials level from the directionality of the macroscopic cellular structure, which may lead to a new generation of smart and adaptive materials and devices.


Assuntos
Cristais Líquidos/química , Elastômeros/química , Campos Magnéticos , Microscopia de Fluorescência , Temperatura
17.
Adv Mater ; 32(1): e1905682, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31664754

RESUMO

3D printable and reconfigurable liquid crystal elastomers (LCEs) that reversibly shape-morph when cycled above and below their nematic-to-isotropic transition temperature (TNI ) are created, whose actuated shape can be locked-in via high-temperature UV exposure. By synthesizing LCE-based inks with light-triggerable dynamic bonds, printing can be harnessed to locally program their director alignment and UV light can be used to enable controlled network reconfiguration without requiring an imposed mechanical field. Using this integrated approach, 3D LCEs are constructed in both monolithic and heterogenous layouts that exhibit complex shape changes, and whose transformed shapes could be locked-in on demand.

18.
Sci Adv ; 6(13): eaay5349, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258400

RESUMO

Photoresponsive liquid crystalline elastomers (LCEs) constitute ideal actuators for soft robots because their light-induced macroscopic shape changes can be harnessed to perform specific articulated motions. Conventional LCEs, however, do not typically exhibit complex modes of bending and twisting necessary to perform sophisticated maneuvers. Here, we model LCE microposts encompassing side-chain mesogens oriented along a magnetically programmed nematic director, and azobenzene cross-linkers, which determine the deformations of illuminated posts. On altering the nematic director orientation from vertical to horizontal, the post's bending respectively changes from light-seeking to light-avoiding. Moreover, both modeling and subsequent experiments show that with the director tilted at 45°, the initially achiral post reversibly twists into a right- or left-handed chiral structure, controlled by the angle of incident light. We exploit this photoinduced chirality to design "chimera" posts (encompassing two regions with distinct director orientations) that exhibit simultaneous bending and twisting, mimicking motions exhibited by the human musculoskeletal system.

19.
Appl Environ Microbiol ; 75(22): 7115-24, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19783747

RESUMO

Subacute ruminal acidosis (SARA) is a metabolic disease in dairy cattle that occurs during early and mid-lactation and has traditionally been characterized by low rumen pH, but lactic acid does not accumulate as in acute lactic acid acidosis. It is hypothesized that factors such as increased gut permeability, bacterial lipopolysaccharides, and inflammatory responses may have a role in the etiology of SARA. However, little is known about the nature of the rumen microbiome during SARA. In this study, we analyzed the microbiome of 64 rumen samples taken from eight lactating Holstein dairy cattle using terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA genes and real-time PCR. We used rumen samples from two published experiments in which SARA had been induced with either grain or alfalfa pellets. The results of TRFLP analysis indicated that the most predominant shift during SARA was a decline in gram-negative Bacteroidetes organisms. However, the proportion of Bacteroidetes organisms was greater in alfalfa pellet-induced SARA than in mild or severe grain-induced SARA (35.4% versus 26.0% and 16.6%, respectively). This shift was also evident from the real-time PCR data for Prevotella albensis, Prevotella brevis, and Prevotella ruminicola, which are members of the Bacteroidetes. The real-time PCR data also indicated that severe grain-induced SARA was dominated by Streptococcus bovis and Escherichia coli, whereas mild grain-induced SARA was dominated by Megasphaera elsdenii and alfalfa pellet-induced SARA was dominated by P. albensis. Using discriminant analysis, the severity of SARA and degree of inflammation were highly correlated with the abundance of E. coli and not with lipopolysaccharide in the rumen. We thus suspect that E. coli may be a contributing factor in disease onset.


Assuntos
Acidose/veterinária , Fenômenos Fisiológicos Bacterianos , Doenças dos Bovinos/microbiologia , Conteúdo Gastrointestinal/microbiologia , Metagenoma , Rúmen/microbiologia , Acidose/microbiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodiversidade , Bovinos , Dieta/veterinária , Análise Discriminante , Feminino , Conteúdo Gastrointestinal/química , Haptoglobinas/análise , Concentração de Íons de Hidrogênio , Lipopolissacarídeos/análise , Lipopolissacarídeos/sangue , Medicago sativa/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Fatores de Tempo
20.
Front Microbiol ; 7: 2128, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28179895

RESUMO

Effects of subacute ruminal acidosis (SARA) challenges on the bacteria in rumen fluid, cecal digesta, and feces of dairy cows were determined using 16S rRNA gene pyrosequencing and real-time quantitative PCR. Six non-lactating Holstein cows with cannulas in the rumen and cecum were used in a 3 × 3 Latin square arrangement of treatments. During the first 3 wk of each experimental period, cows received a control diet containing 70% forages on a dry matter (DM) basis. In wk 4 of each period, cows received one of three diets: (1) the control diet; (2) a diet in which 34% of the dietary DM was replaced with pellets of ground wheat and barley (GBSC); or (3) a diet in which 37% of dietary DM was replaced with pellets of ground alfalfa (APSC). Rumen fluid, cecal digesta and feces were collected on d 5 of wk 4 of each period and the composition of the bacterial community was studied. Rumen fermentation responses were reported in a companion study. Both SARA-inducing challenges resulted in similar digesta pH depressions (as shown by the companion study), and reduced bacterial richness and diversity in rumen fluid, but GBSC had the larger effect. None of the challenges affected these measures in cecal digesta, and only GBSC reduced bacterial richness and diversity in feces. Only GBSC reduced the abundance of Bacteroidetes in rumen fluid. Abundances of limited number of bacterial genera identified by 16S rRNA gene sequencing in the rumen, cecum and feces were affected by the GBSC. The APSC did not affect any of these abundances. Both challenges increased the abundances of several starch, pectin, xylan, dextrin, lactate, succinate, and sugar fermenting bacterial species in the rumen, cecum, and feces as determined by qPCR. Only GBSC increased that of Megasphaera elsdenii in the rumen. Both challenges decreased the abundance of Streptococcus bovis, and increased that of Escherichia coli, in cecal digesta and feces, with GBSC having the larger effect. These results showed that the SARA challenges caused moderate and reversible changes of the composition of the bacteria in the foregut and hindgut, with the greater changes observed during GBSC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA