Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 43(21): 7245-56, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25182070

RESUMO

Owing to the considerable publicity that has been given to petroleum related economic, environmental, and political problems, renewed attention has been focused on the development of highly efficient and stable catalytic materials for the production of chemical/fuel from renewable resources. Supported nickel nanoclusters are widely used for catalytic reforming reactions, which are key processes for generating synthetic gas and/or hydrogen. New challenges were brought out by the extension of feedstock from hydrocarbons to oxygenates derivable from biomass, which could minimize the environmental impact of carbonaceous fuels and allow a smooth transition from fossil fuels to a sustainable energy economy. This tutorial review describes the recent efforts made toward the development of nickel-based catalysts for the production of hydrogen from oxygenated hydrocarbons via steam reforming reactions. In general, three challenges facing the design of Ni catalysts should be addressed. Nickel nanoclusters are apt to sinter under catalytic reforming conditions of high temperatures and in the presence of steam. Severe carbon deposition could also be observed on the catalyst if the surface carbon species adsorbed on metal surface are not removed in time. Additionally, the production of hydrogen rich gas with a low concentration of CO is a challenge using nickel catalysts, which are not so active in the water gas shift reaction. Accordingly, three strategies were presented to address these challenges. First, the methodologies for the preparation of highly dispersed nickel catalysts with strong metal-support interaction were discussed. A second approach-the promotion in the mobility of the surface oxygen-is favored for the yield of desired products while promoting the removal of surface carbon deposition. Finally, the process intensification via the in situ absorption of CO2 could produce a hydrogen rich gas with low CO concentration. These approaches could also guide the design of other types of heterogeneous base-metal catalysts for high temperature processes including methanation, dry reforming, and hydrocarbon combustion.

2.
ACS Cent Sci ; 10(4): 852-859, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38680562

RESUMO

Proton exchange membrane water electrolysis (PEMWE) is a promising solution for the conversion and storage of fluctuating renewable energy sources. Although tremendously efficient materials have been developed, commercial PEMWE products still cannot fulfill industrial demands regarding efficiency and stability. In this work, we demonstrate that the stress distribution, a purely mechanical parameter in electrolyzer assembly, plays a critical role in overall efficiency and stability. The conventional cell structure, which usually adopts a serpentine flow channel (S-FC) to deliver and distribute reactants and products, resulted in highly uneven stress distribution. Consequently, the anode catalyst layer (ACL) under the high stress region was severely deformed, whereas the low stress region was not as active due to poor electrical contact. To address these issues, we proposed a Ti mesh flow channel (TM-FC) with gradient pores to reduce the stress inhomogeneity. Consequently, the ACL with TM-FC exhibited 27 mV lower voltage initially and an 8-fold reduction in voltage degradation rate compared to that with S-FC at 2.0 A/cm2. Additionally, the applicability of the TM-FC was demonstrated in cross-scale electrolyzers up to 100 kW, showing a voltage increase of only 20 mV (accounting for less than 2% of overall voltage) after three orders of magnitude scaleup.

3.
ACS Appl Mater Interfaces ; 16(13): 16408-16417, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502312

RESUMO

The widespread application of proton exchange membrane water electrolyzers (PEMWEs) is hampered by insufficient lifetime caused by degradation of the anode catalyst layer (ACL). Here, an important degradation mechanism has been identified, attributed to poor mechanical stability causing the mass transfer channels to be blocked by ionomers under operating conditions. By using liquid-phase atomic force microscopy, we directly observed that the ionomers were randomly distributed (RD) in the ACL, which occupied the mass transfer channels due to swelling, creeping, and migration properties. Interestingly, we found that alternating treatments of the ACL in different water/temperature environments resulted in forming three-dimensional ionomer networks (3D INs) in the ACL, which increased the mechanical strength of microstructures by 3 times. Benefitting from the efficient and stable mass transfer channels, the lifetime was improved by 19 times. A low degradation rate of approximately 3.0 µV/h at 80 °C and a high current density of 2.0 A/cm2 was achieved on a 50 cm2 electrolyzer. These data demonstrated a forecasted lifetime of 80 000 h, approaching the 2026 DOE lifetime target. This work emphasizes the importance of the mechanical stability of the ACL and offers a general strategy for designing and developing a durable PEMWE.

4.
Adv Mater ; 36(28): e2402780, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661112

RESUMO

The high cost of proton exchange membrane water electrolysis (PEMWE) originates from the usage of precious materials, insufficient efficiency, and lifetime. In this work, an important degradation mechanism of PEMWE caused by dynamics of ionomers over time in anode catalyst layer (ACL), which is a purely mechanical degradation of microstructure, is identified. Contrary to conventional understanding that the microstructure of ACL is static, the micropores are inclined to be occupied by ionomers due to the localized swelling/creep/migration, especially near the ACL/PTL (porous transport layer) interface, where they form transport channels of reactant/product couples. Consequently, the ACL with increased ionomers at PTL/ACL interface exhibit rapid and continuous degradation. In addition, a close correlation between the microstructure of ACL and the catalyst ink is discovered. Specifically, if more ionomers migrate to the top layer of the ink, more ionomers accumulate at the ACL/PEM interface, leaving fewer ionomers at the ACL/PTL interface. Therefore, the ionomer distribution in ACL is successfully optimized, which exhibits reduced ionomers at the ACL/PTL interface and enriches ionomers at the ACL/PEM interface, reducing the decay rate by a factor of three when operated at 2.0 A cm-2 and 80 °C. The findings provide a general way to achieve low-cost hydrogen production.

5.
Phys Chem Chem Phys ; 14(12): 4066-9, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22246195

RESUMO

This paper describes a strategy for producing hydrogen via steam reforming of ethylene glycol over supported nickel catalysts. Nickel plays a crucial role in conversion of ethylene glycol and production of hydrogen, while oxide supports affect product distribution of carbonaceous species. A plausible reaction pathway is proposed based on our results and the literature.


Assuntos
Etilenoglicol/química , Hidrogênio/química , Níquel/química , Catálise
6.
Phys Chem Chem Phys ; 14(10): 3295-8, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22297434

RESUMO

This paper describes the utilization of skeletal Ni-based catalysts for steam reforming of ethanol to produce CO-free hydrogen, which could be superior in the application of fuel cells. Assistant metals play different roles in the reaction; Pt and Cu suppress the methanation and enhance H(2) production, while Co promotes the methanation.


Assuntos
Hidrogênio/química , Níquel/química , Temperatura , Dióxido de Carbono/química , Catálise , Cobre/química , Etanol/química , Tamanho da Partícula , Platina/química , Propriedades de Superfície
7.
ACS Omega ; 6(3): 2206-2214, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521460

RESUMO

Based on the characteristic that Ca2+ can react with 4-ethyl-2-methoxyphenol (EMP) to form a complexation with a phenol-calcium ratio of 4:1, a new extraction and purification method of EMP is developed for the first time in this work. At an optimum purification condition, 99.60% purity of EMP can be obtained through a reaction and decomposition operation. By combining a variety of characterizations, which consist of in situ Fourier transform infrared spectrometer (FTIR), nuclear magnetic resonance (NMR), inductively coupled plasma optical emission spectrometer (ICP-OES), gas chromatography-mass spectrometry (GC-MS)/flame ionization detector (FID), elemental analysis, and thermogravimetric analysis, the reaction mechanism of the coordination process is studied. It is demonstrated that there are three stages of the coordination reaction between Ca2+ and EMP. A neutralization reaction occurs in the first stage, while the second stage is a mixing reaction stage including neutralization and coordination reaction. When the reaction proceeds to the third stage, another coordination reaction occurs. Furthermore, phenol and ethanol are added as impurities in EMP. EMP with a purity of more than 99.50% can be obtained using this purification method. It confirms that this efficient method can achieve a good purification effect even for EMP solutions with complicated components.

8.
RSC Adv ; 11(2): 1115-1123, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35423718

RESUMO

Transition metals (Fe, Co, Ni) supported on activated carbons with different pore diameters (<2 nm, 10 nm, 50 nm) to synthesize carbon nanotubes (CNTS) are first investigated in this study. Through several characteristic analyses, Ni supported on 50 nm activated carbon is verified to be the most efficient catalyst among the samples for CNT growth. The optimum conditions for CNT growth are at a growth temperature of 750 °C with a reaction time of 45 min. Furthermore, a novel purification method for CNTs is proposed, in which KOH and Ca(OH)2 powder are pre-mixed with the crude CNTs and CO2 and N2 gas are introduced into this mixture. When KOH and Ca(OH)2 powder are used at a ratio of 2 : 1 under the atmosphere of CO2 and N2 at the temperature of 750 °C for 1 h, almost all of the amorphous carbon is ablated. Compared with KOH powder, the addition of Ca(OH)2 not only advances the ablation effect, but reduces the damage to CNTs.

9.
ACS Omega ; 5(17): 10011-10020, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391489

RESUMO

A mild and effective synthesis of resorcinol-furfural (RF) thermosetting resin was proposed with ethanol as a distinctive solvent, which, as a usually neglected factor, was shown to not only help form a homogeneous reaction system but also observably reduce the energy barriers between the early intermediates and transition states in addition reactions by explicit solvent effects, drawn from theoretical calculation conclusions. Besides, the para-additions on aromatic rings were more dominant than ortho-additions with the same reactants, which affected the final link types of monomers verified by Fourier transform infrared spectroscopy and two-dimensional nuclear magnetic resonance tests. The prepared resin can be assigned to a relatively fast gel speed and a high residual mass (65.25%) after pyrolysis in a N2 atmosphere by adjusting the molar ratios of F to R, and the curing of that was a complex reaction, with a curing temperature around 149 °C and an activation energy of about 49.11 kJ mol-1 obtained by the Kissinger method.

10.
Chem Commun (Camb) ; 53(44): 5958-5961, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28462957

RESUMO

A rational design of a Pd catalyst with highly dispersed Pd nanoclusters on an Al doped ceria-based oxide for low temperature selective catalytic reduction of NOx by hydrogen with excess O2 was achieved. The supported Pd nanocluster shows a high hydrogen spillover ability and a NOx conversion of >84% within 100-300 °C.

11.
Nanoscale ; 7(17): 7593-602, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25670350

RESUMO

Tuning the interfacial perimeter and structure is crucial to understanding the origin of catalytic performance. This paper describes the design, characterization, and application of CeO2 modified Au@SBA-15 (Au-CeO2@SBA-15) catalysts in selective oxidation of benzyl alcohol. The reaction results showed that Au-CeO2@SBA-15 catalysts exhibited higher catalytic activity compared with Au@SBA-15 and Au/CeO2 catalysts under identical conditions along with the high selectivity towards benzaldehyde (>99%). The turnover frequency of benzyl alcohol over the Au-100CeO2@SBA-15 catalyst is about nine-fold and four-fold higher than those of Au@SBA-15 and Au/CeO2 catalysts, respectively. The supported catalysts were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive spectrometry, and X-ray photoelectron spectroscopy. It was found that the Au and small CeO2 nanoparticles (∼5 nm) were homogeneously mixed in the channels of SBA-15, which led to an increase in the interfacial area between Au and CeO2 and consequently a better catalytic performance of Au-CeO2@SBA-15 catalysts for the selective oxidation of benzyl alcohol to benzaldehyde compared with that of Au/CeO2. The prevention of agglomeration and leaching of Au nanoparticles by restricting them inside the mesopores of SBA-15 was conducive to the stable existence of large quantities of Au-CeO2 interface, which leads to high stability of the Au-CeO2@SBA-15 catalyst.

12.
Nanoscale ; 6(17): 10000-8, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-24933477

RESUMO

This paper describes an investigation of the promotional effect of Cu on the catalytic performance of Pt/Al2O3 catalysts for propane dehydrogenation. We have shown that Pt/Al2O3 catalysts possess higher propylene selectivity and lower deactivation rate as well as enhanced anti-coking ability upon Cu addition. The optimized loading content of Cu is 0.5 wt%, which increases the propylene selectivity to 90.8% with a propylene yield of 36.5%. The origin of the enhanced catalytic performance and anti-coking ability of the Pt-Cu/Al2O3 catalyst is ascribed to the intimate interaction between Pt and Cu, which is confirmed by the change of particle morphology and atomic electronic environment of the catalyst. The Pt-Cu interaction inhibits propylene adsorption and elevates the energy barrier of C-C bond rupture. The inhibited propylene adsorption diminishes the possibility of coke formation and suppresses the cracking reaction towards the formation of lighter hydrocarbons on Pt-Cu/Al2O3, while a higher energy barrier for C-C bond cleavage suppresses the methane formation.

13.
Chem Commun (Camb) ; 49(39): 4226-8, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23124111

RESUMO

This communication describes the synthesis of a nanocomposite Ni@ZrO2 catalyst with enhanced metal-support interaction by introducing metal nanoparticles into the framework of the oxide support. The catalyst shows high catalytic activity and stability for hydrogen production via steam reforming of ethanol.

14.
Chem Commun (Camb) ; 49(82): 9383-5, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23877131

RESUMO

This communication describes the design and synthesis of anti-sintering and -coke nickel phyllosilicate (PS) nanotubes (Ni/PSn) for hydrogen production via reforming reactions. The introduction of nickel particles in PS nanotubes could effectively maintain the Ni size and increase the resistance of metal particles for carbon deposition.

15.
Chem Commun (Camb) ; 49(90): 10647-9, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24100887

RESUMO

This communication describes the synthesis of Pt@CeO2 core-shell catalysts for the application of highly efficient CO oxidation, where the 50% CO conversion temperature is lower than 200 °C. Pt@CeO2 is thermally stable as no deactivation occurs during the 70 h reaction, and the morphology is unchanged even after 700 °C thermal treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA