Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398564

RESUMO

One new compound with an isoindolinone skeleton, along with erinacines A, C, and S, was isolated from the mycelia of Hericium erinaceus, an edible fungus with a long history of use in traditional Chinese medicine. Based on analysis of MS and NMR spectral data, the structure of the compound was identified as (2E,6E)-8-(2-(1-carboxy-3-methylbutyl)-4,6-dihydroxy-1-oxoisoindolin-5-yl)-2,6-dimethylocta-2,6-dienoic acid. In light of this discovery, we have given this compound the name erinacerin W. Using a co-culture in vitro LPS-activated BV2 microglia-induced SH-SY5Y neuroinflammation model, the results showed that erinacerin W demonstrated protection against the LPS-activated BV-2 cell-induced overexpression of IL-6, IL-1ß, and TNF-α on SH-SY5Y cells. This finding may provide potential therapeutic approaches for central nervous disorders.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Lipopolissacarídeos/farmacologia , Hericium
2.
J Am Coll Nutr ; 40(4): 349-357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32657670

RESUMO

OBJECTIVE: Nonalcoholic steatohepatitis (NASH) has become a prominent liver disease in contemporary society because of the changing dieting styles. Complicated syndromes often accompanied by obesity and diabetes makes no standard treatment for NASH. Therefore, we investigated the potential role of Antrodia cinnamomea mycelium (ACM) as nutraceutical supplementation in the treatment of NASH in this 6-month randomized, double-blind, placebo-controlled study. METHOD: 28 Participants were treated with three capsules per day containing either 420 mg of ACM or 420 mg of starch as a placebo. The participants were required to follow a predetermined regular visit to hospital every three months during the intervention period (6 months). During each study visit, subjects underwent anthropometric measurements and blood testing for biochemical analysis, immune function assay, inflammatory cytokines assay, and FibroMax test. RESULTS: The ACM supplemented group had a significant improvement in steatosis and decreased in the inflammatory marker of TNF-α after three and six months. NASH patients who received ACM showed a significant decrease in the SteatoTest mean value from 0.66 at baseline to 0.49 at 6 months (p < 0.029) and the ActiTest mean value decreased from 0.46 at baseline to 0.30 at 6 months (p < 0.029). CONCLUSION: This is the first clinical investigation that explores the hepatoprotective effect of A. cinnamomea mycelium in patients with NASH. No participants experienced any adverse events during the study, which suggested that ACM is a safe alternative treatment for NASH.


Assuntos
Suplementos Nutricionais , Hepatopatia Gordurosa não Alcoólica , Polyporales/química , Método Duplo-Cego , Humanos , Micélio , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
3.
Molecules ; 26(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34641562

RESUMO

Oral cancers, hepatocellular carcinoma, and colorectal cancers are the three most common cancers, leading to 18,000 cases of cancer-related mortality in Taiwan per year. To bridge the gap towards clinical translation, we developed a circulating tumor cell (CTC) organoid culture workflow that efficiently expands CTC from patients to test Antrodia Cinnamomea mycelium-derived bioactive compounds. Three ACM-derived bioactive compounds were evaluated for tumor chemosensitization characteristics. Significant and consistent cytotoxic/5-FU sensitizing effects of GKB202 were found on 8 different patient-derived tumors. Acute toxicity profile and hepatic metabolism of GKB202 in rats suggest GKB202 is rapidly cleared by liver and is well tolerated up to the dose of 20 mg/kg. This comprehensive study provides new evidence that liquid fermentation of Antrodia cinnamomea mycelium (ACM) contains bioactive compounds that lead to effective control of CTC, especially when combined with 5-FU. Together, these data suggest ACM-derived GKB202 may be considered for further clinical investigation in the context of 5-FU-based combination therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/uso terapêutico , Polyporales/química , Adulto , Idoso , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Micélio/química , Organoides , Ratos , Células Tumorais Cultivadas
4.
Anal Chem ; 91(13): 8213-8220, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31141343

RESUMO

The discovery of different binding receptors to allow rapid and high-sensitivity detection via a noninvasive urine test has become the goal for urothelial carcinoma (UC) diagnosis and surveillance. In this study, we developed a new screening membrane receptor platform for bladder cancer cells by integrating surface-enhanced Raman spectroscopy (SERS) with 4-aminothiophenol (4-ATP)-modified AuAg nanohollows upon NIR laser excitation. AuAg nanohollows have an absorption band at ∼630 nm, and slightly off-resonance 785 nm laser excitation is used for minimal photothermal effect. Using the same carbodiimide cross-linker chemistry to conjugate anti-EGFR, transferrin (TF), 4-carboxyphenylboronic acid (CPBA), folic acid (FA), and hyaluronic acid (HA) molecules, by screening the 4-ATP SERS signals intensity, we demonstrated that the targeting efficiency with the cost-effective CPBA molecule is comparable with the conjugation of anti-EGFR antibody to aggressive T24 cancer cells (high-grade), while weak intensity 4-ATP SERS responses to targets were obtained by grade-I RT4 bladder cancer cells, NIH/3T3 fibroblast cells, and SV-HUC1 bladder normal cells. This SERS nanoprobe platform makes primary bladder carcinoma screening from in vitro to ex vivo more straightforward. Our demonstration offers exciting potential for SERS screening of specific receptors on cancer cells of different grades and facilitates new opportunities ranging from surface engineering of SERS material tags to SERS imaging-guided and targeted phototherapy of cancer cells by controlling the laser powers.


Assuntos
Biomarcadores Tumorais/análise , Análise Espectral Raman/métodos , Neoplasias da Bexiga Urinária/diagnóstico , Compostos de Anilina/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Ouro , Humanos , Nanopartículas Metálicas/química , Camundongos , Prata , Compostos de Sulfidrila/química
5.
J Cachexia Sarcopenia Muscle ; 14(5): 2226-2238, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562939

RESUMO

BACKGROUND: Disuse atrophy is a frequent cause of muscle atrophy, which can occur in individuals of any age who have been inactive for a prolonged period or immobilization. Additionally, acute diseases such as COVID-19 can cause frequent sequelae and exacerbate muscle wasting, leading to additional fatigue symptoms. It is necessary to investigate potent functional nutrients for muscle reinforcement in both disuse atrophy and fatigue to ensure better physical performance. METHODS: The effects of Sanghuangporus sanghuang SS-MN4 mycelia were tested on two groups of 6-week-old male mice-one with disuse atrophy and the other with fatigue. The disuse atrophy group was divided into three sub-groups: a control group, a group that underwent hind limb casting for 7 days and then recovered for 7 days and a group that was administered with SS-MN4 orally for 14 days, underwent hind limb casting for 7 days and then recovered for 7 days. The fatigue group was divided into two sub-groups: a control group that received no SS-MN4 intervention and an experimental group that was administered with SS-MN4 orally for 39 days and tested for exhaustive swimming and running on Day 31 and Day 33, respectively. RNA sequencing (RNA-seq) and western blot analysis were conducted on C2C12 cell lines to identify the therapeutic effects of SS-MN4 treatment. RESULTS: In a disuse atrophy model induced by hind limb casting, supplementing with 250 mg/kg of SS-MN4 for 14 days led to 111.2% gastrocnemius muscle mass recovery and an 89.1% improvement in motor function on a treadmill (P < 0.05). In a fatigue animal model, equivalent SS-MN4 dosage improved swimming (178.7%) and running (162.4%) activities (P < 0.05) and reduced blood urea nitrogen levels by 18% (P < 0.05). SS-MN4 treatment also increased liver and muscle glycogen storage by 34.36% and 55.6%, respectively, suggesting a higher energy reserve for exercise. RNA-seq and western blot studies from the C2C12 myotube showed that SS-MN4 extract upregulates Myh4 and helps sustain myotube integrity against dexamethasone damage. CONCLUSIONS: Supplementation of SS-MN4 (250-mg/kg body weight) with hispidin as active compound revealed a potential usage as a muscle nutritional supplement enhancing muscle recovery, fast-twitch fibre regrowth and fatigue resistance.

6.
Fitoterapia ; 171: 105695, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797793

RESUMO

For centuries, food, herbal medicines, and natural products have been valuable resources for discovering novel antiviral drugs, uncovering new structure-activity relationships, and developing effective strategies to prevent/treat viral infections. One such resource is Phellinus linteus, a mushroom used in folk medicine in Taiwan, Japan, Korea, and China. In this rich historical context, the key metabolites of Phellinus linteus mycelia ethanolic extract (GKPL) impacting the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at multiple stages have yet to be explored. Thus, this study systematically identifies and assesses the inhibitory effect of GKPL on the SARS-CoV-2 virus. Initially, the concentrations and contact times of GKPL against SARS-CoV-2 pseudovirus were assessed in HepG2 cells. Subsequently, utilizing the Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry method, potential biomarkers in the fungal extract were discerned. Metabolomic analysis identified 18 compounds in GKPL, with hispidin and hypholomine B present in the highest amounts. These compounds were isolated using chromatographic techniques and further identified through 1D NMR spectroscopic and mass spectrometry analysis. Hispidin and hypholomine B were found to inhibit the infection of SARS-CoV-2 pseudovirus by reducing angiotensin-converting enzyme 2 gene expression in HepG2, thereby decreasing viral entry. Moreover, hispidin and hypholomine B effectively block the spike receptor-binding domain, while hypholomine B, for the first time, showed significant inhibition of 3CL protease. This suggests that GKPL, enriched with hispidin and hypholomine B, has the potential to be used as an active ingredient against SARS-CoV-2.


Assuntos
COVID-19 , Espectrometria de Massas em Tandem , Humanos , SARS-CoV-2 , Estrutura Molecular , Espectroscopia de Ressonância Magnética
7.
Nutrients ; 15(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513520

RESUMO

Cataracts, a prevalent age-related eye condition, pose a significant global health concern, with rising rates due to an aging population and increased digital device usage. In Taiwan, cataract prevalence is particularly high, reaching up to 90% among individuals aged 70 and above. The lens of the eye absorbs short-wave light, which can lead to oxidative stress in lens epithelial cells and contribute to cataract formation. Exposure to ultraviolet (UV) light further exacerbates the risk of cataracts by generating reactive oxygen species. Heat-shock proteins (HSPs), involved in protein maintenance and repair, have been linked to cataract development. Cordyceps cicadae (C. cicadae), a traditional Chinese medicine, has a long history of use and is known for its pharmacological effects. N6-(2-hydroxyethyl) adenosine (HEA), a bioactive compound found in C. cicadae, exhibits anti-inflammatory, immunomodulatory, and neuroprotective properties. Previous studies have shown that C. cicadae mycelial extracts improve dry eye disease and reduce intraocular pressure in animal models. Additionally, C. cicadae possesses antioxidant properties, which are beneficial for combating cataract formation. In this study, we aim to evaluate the preventive efficacy of C. cicadae mycelial extracts in UV-induced cataract development. By investigating the ameliorative effects of C. cicadae on eye diseases and its potential role in ocular health improvement, we hope to uncover new options for cataract prevention and provide insights into the mechanisms of action. The findings of this research could provide a novel approach for nutritional supplements targeting cataract prevention, offering potential benefits in the field of ocular health.


Assuntos
Catarata , Cordyceps , Camundongos , Animais , Antioxidantes/farmacologia , Estresse Oxidativo , Adenosina , Catarata/etiologia , Catarata/prevenção & controle
8.
Oncol Lett ; 23(4): 128, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35251348

RESUMO

Gemcitabine (GEM) is a typical chemotherapeutic drug used to treat pancreatic cancer, but GEM resistance develops within weeks after chemotherapy. Hence, the development of a new strategy to overcome drug resistance is urgent. 4-Acetylantroquinonol B (4-AAQB), a ubiquinone derived from Taiwanofungus camphoratus, has hepatoprotective, anti-obesity, and antitumor activities. However, the role of 4-AAQB in enhancing GEM sensitivity is unclear. This study aimed to determine the underlying mechanisms by which 4-AAQB enhances cytotoxicity and GEM sensitivity. Cell viability was dramatically reduced by 4-AAQB (2 and 5 µM) treatment in the MiaPaCa-2 and GEM-resistant MiaPaCa-2 (MiaPaCa-2GEMR) human pancreatic cancer cells. 4-AAQB led to cell cycle arrest, upregulated the levels of reactive oxygen species (ROS), promoted apoptosis, and inhibited autophagy, which subsequently enhanced GEM chemosensitivity by suppressing the receptor for advanced glycation end products (RAGE)/high mobility group box 1 (HMGB1)-initiated PI3K/Akt/multidrug resistance protein 1 (MDR1) signaling pathway in both cell lines. Vascular endothelial growth factor A (VEGFA) expression, cell migration, and invasion were also inhibited by the 4-AAQB incubation. Overall, this combination treatment strategy might represent a novel approach for GEM-resistant pancreatic cancer.

9.
Food Sci Nutr ; 9(9): 4905-4915, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532002

RESUMO

Cordyceps cicadae, an entomopathogenic fungus, is a source of traditional Chinese medicine in China. Due to the low yield of wild C. cicadae, artificial cultivation approaches will be needed to meet the increasing market demand. Using bioreactor culture can increase mass production and the abundance of the active component, N6-(2-hydroxyethyl)-adenosine (HEA). Here, we describe a safety assessment for a novel mycelium preparation method. Many studies have confirmed the safety of C. cicadae mycelia. However, the acute safety pharmacology of the C. cicadae enriched with the high HEA (3.90 mg/g) compound has not been evaluated. This study evaluated the central nervous system (CNS), cardiovascular system, and respiratory system in ICR male mice via oral gavage administration. For each requested item, two batches of eight mice tested on a vehicle (0.5% carboxymethyl cellulose, CMC) and C. cicadae mycelia (1,000 mg/kg) were performed. The heart rate at 60 min for the vehicle and C. cicadae mycelium treatment was 700.3 ± 55.4 and 603.0 ± 42.3 bpm, respectively (p = .4279). For echocardiographic analysis, the LV mass of the vehicle and drug treatment was 86.7 ± 6.4 and 80.2 ± 7.7, respectively (p = .0933). In the respiratory test, the tidal volume of the vehicle and drug treatments was 0.11 ± 0.01 and 0.14 ± 0.01 at 60 min, respectively (p = .4262). These results demonstrate that the oral administration of HEA-enriched C. cicadae mycelia is safe for the CNS, cardiovascular, and respiratory systems.

10.
BMC Complement Med Ther ; 21(1): 295, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34865649

RESUMO

BACKGROUND: Sleep disruption is a major public health issue and may increase the risk of mortality by ten-folds if an individual is sleeping less than 6 h per night. Sleep has changed dramatically during to the COVID-19 pandemic because COVID symptoms can lead to psychological distress including anxiety. Hericium erinaceus mycelium has been widely investigated in both the in vivo studies and clinical trials for its neuroprotective functions because the mycelium contains hericenones and erinacines, which synthesize the nerve growth factor and brain-derived neurotrophic factor (BDNF). Recent in vivo reports have shown showed that erinacine A-enriched Hericium erinaceus mycelium can modulate BDNF/TrkB/PI3K/Akt/GSK-3ß pathways to induce an antidepressant-like effect. A large body of evidence indicates that erinacine can pass the blood-brain barrier and suggests its neuroprotective function in both peripheral and central nervous systems. Thus, Hericium erinaceus mycelium may be a dual-function supplement for sleep disruption improvement while sustaining anxiolytic effects. METHOD: To simulate the condition of sleep disruption, the mice were subjected to the tail suspension test (TST) for 15 min every day during the same period for nine consecutive days. Two different doses (75 and 150 mg/kg) of Hericium erinaceus mycelium were administered orally 20 min prior to the TSTs before entering the light period of 12:12 h L:D cycle. All sleep-wake recording was recorded for 24 h using electroencephalogram and electromyogram. The elevated-plus-maze and open-field tests were conducted to record the behavior activities. RESULTS: Consecutive TSTs prior to the light period could cause significant sleep disturbance and anxiety behavior in the elevated-plus-maze experiments. Results showed that administration with Hericium erinaceus mycelium at 150 mg/kg ameliorated the rodent anxiety (p < 0.05) and reversed the TST-induced NREM sleep disturbance in the dark period. CONCLUSION: This is the first in vivo study suggesting that Hericium erinaceus mycelium has a dual potential role for anxiety relief through improving sleep disruptions.


Assuntos
Ansiedade/metabolismo , Produtos Biológicos/farmacologia , Hericium , Micélio , Sono/efeitos dos fármacos , Animais , COVID-19 , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Sono-Vigília/metabolismo
11.
Front Nutr ; 8: 788965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111796

RESUMO

Sleep disturbances have been the hallmark of the recent coronavirus disease 2019 pandemic. Studies have shown that once sleep is disrupted, it can lead to psychological and physical health issues which can, in turn, disrupt circadian rhythm and induce further sleep disruption. As consumers are trying to establish healthy routines, nutritional and preclinical safety investigation of fermented hispidin-enriched Sanghuangporus sanghuang mycelia (GKSS) as a novel food material for spontaneous sleep in Sprague-Dawley rats is conducted for the first time. Results showed that the nutritional analysis of GKSS including moisture, ash, crude lipid, crude protein, carbohydrate, and energy were found to be 2.4 ± 0.3%, 8.0 ± 2.5%, 1.7 ± 0.3%, 22.9 ± 1.2%, 65.1 ± 3.1%, and 367.1 ± 10.2 kcal/100 g respectively. In the 28-day repeated-dose oral toxicity study, only Sprague-Dawley male rats receiving 5 g/kg showed a slight decrease in feed consumption at week 3, but no associated clinical signs of toxicity or significant weight loss were observed. Although a significant reduction of the platelet count was found in mid- and high-dose GKSS treated male groups, such changes were noted to be within the normal range and were not correlated with relative spleen weight changes. Hence, the no observed adverse effect level (NOAEL) of GKSS was identified to be higher than 5 g/kg in rats. After the safety of GKSS is confirmed, the sleep-promoting effect of GKSS ethanolic extract enriched with hispidin was further assessed. Despite 75 mg/kg of GKSS ethanolic extract does not affect wakefulness, rapid eye movement (REM) sleep and non-REM (NREM) sleep, GKSS ethanolic extract at 150 mg/kg significantly decreased wakefulness and enhanced NREM and REM sleep. Interestingly, such effects seem to be mediated through anti-inflammatory activities via NF-E2-related factor-2 (Nrf2) signaling pathway. Taken together, these findings provide the preliminary evidence to studies support the claims suggesting that GKSS contained useful phytochemical hispidin could be considered as and is safe to use as a functional food agent or nutraceutical for relieving sleep problems mediated by Nrf2 pathway, which the results are useful for future clinical pilot study.

12.
Front Microbiol ; 10: 1141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178844

RESUMO

Current antibiotic treatments fail to eliminate the Clostridium difficile (C. difficile) spores and induce dysbiosis and intestinal inflammation via off-target effect, which causes refractory C. difficile infection raise an unmet need for a spore-specific antimicrobial treatment. We developed a sporicidal and antimicrobial vancomycin-loaded spore-targeting iron oxide nanoparticle (van-IONP) that selectively binds to C. difficile spores. Cryo-electron microscopy showed that vancomycin-loaded nanoparticles can target and completely cover spore surfaces. They not only successfully delayed the germination of the spores but also inhibited ∼50% of vegetative cell outgrowth after 48 h of incubation. The van-IONPs also inhibited the interaction of spores with HT-29 intestinal mucosal cells in vitro. In a murine model of C. difficile infection, the van-IONP significantly protected the mice from infected by C. difficile infection, reducing intestinal inflammation, and facilitated superior mucosal viability compared with equal doses of free vancomycin. This dual-function targeted delivery therapy showed advantages over traditional therapeutics in treating C. difficile infection.

14.
Sci Rep ; 7(1): 8124, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811642

RESUMO

Clinical management of Clostridium difficile infection is still far from satisfactory as bacterial spores are resistant to many chemical agents and physical treatments. Certain types of nanoparticles have been demonstrated to exhibit anti-microbial efficacy even in multi-drug resistance bacteria. However, most of these studies failed to show biocompatibility to the mammalian host cells and no study has revealed in vivo efficacy in C. difficile infection animal models. The spores treated with 500 µg/mL Fe3-δO4 nanoparticles for 20 minutes, 64% of the spores were inhibited from transforming into vegetative cells, which was close to the results of the sodium hypochlorite-treated positive control. By cryo-electron micro-tomography, we demonstrated that Fe3-δO4 nanoparticles bind on spore surfaces and reduce the dipicolinic acid (DPA) released by the spores. In a C. difficile infection animal model, the inflammatory level triple decreased in mice with colonic C. difficile spores treated with Fe3-δO4 nanoparticles. Histopathological analysis showed a decreased intense neutrophil accumulation in the colon tissue of the Fe3-δO4 nanoparticle-treated mice. Fe3-δO4 nanoparticles, which had no influence on gut microbiota and apparent side effects in vivo, were efficacious inhibitors of C. difficile spore germination by attacking its surface and might become clinically feasible for prophylaxis and therapy.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Compostos Férricos/química , Inflamação/microbiologia , Nanopartículas/química , Esporos Bacterianos/fisiologia , Animais , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/prevenção & controle , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Compostos Férricos/administração & dosagem , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Inflamação/prevenção & controle , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Esporos Bacterianos/efeitos dos fármacos
15.
Biomaterials ; 34(32): 7873-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23876757

RESUMO

We present an approach for synchronizing hyperthermia and thermal-responsive local drug release. The targeting probe has a magnetite nanocrystal (Fe3O4@PSMA) core and a polynucleotide shell that carries 5-fluorouracil (5-FU) and anti-human epidermal growth factor receptor 2 (anti-HER2) antibody for cancer cell-specific targeting. The targeting nanocrystals play as an important role to relay the externally delivered radiofrequency energy for tumor hyperthermia. Locoregional heat then triggers a drug release from the oligonucleotide carrier as it directly damages tumor cells. Cell viability assays and pathological examinations show that this synchronization is significantly more efficacious in both in vitro and in vivo models than hyperthermia or chemotherapy alone. Prominent tumor remission in vivo was achieved through radiofrequency synchronization of hyperthermia and chemotherapy after the nanoparticle had been intravenously injected.


Assuntos
Óxido Ferroso-Férrico/química , Fluoruracila/farmacologia , Hipertermia Induzida/métodos , Nanopartículas/química , Neoplasias/terapia , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Sobrevivência Celular , Sistemas de Liberação de Medicamentos , Masculino , Camundongos Endogâmicos C3H , Neoplasias/tratamento farmacológico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA