Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nucleic Acids Res ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021337

RESUMO

Trichoderma reesei is an economically important enzyme producer with several unique meiotic features. spo11, the initiator of meiotic double-strand breaks (DSBs) in most sexual eukaryotes, is dispensable for T. reesei meiosis. T. reesei lacks the meiosis-specific recombinase Dmc1. Rad51 and Sae2, the activator of the Mre11 endonuclease complex, promote DSB repair and chromosome synapsis in wild-type and spo11Δ meiosis. DNA methyltransferases (DNMTs) perform multiple tasks in meiosis. Three DNMT genes (rid1, dim2 and dimX) differentially regulate genome-wide cytosine methylation and C:G-to-T:A hypermutations in different chromosomal regions. We have identified two types of DSBs: type I DSBs require spo11 or rid1 for initiation, whereas type II DSBs do not rely on spo11 and rid1 for initiation. rid1 (but not dim2) is essential for Rad51-mediated DSB repair and normal meiosis. rid1 and rad51 exhibit a locus heterogeneity (LH) relationship, in which LH-associated proteins often regulate interconnectivity in protein interaction networks. This LH relationship can be suppressed by deleting dim2 in a haploid rid1Δ (but not rad51Δ) parental strain, indicating that dim2 and rid1 share a redundant function that acts earlier than rad51 during early meiosis. In conclusion, our studies provide the first evidence of the involvement of DNMTs during meiotic initiation and recombination.

2.
BMC Genomics ; 25(1): 465, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741087

RESUMO

BACKGROUND: The early 2 factor (E2F) family is characterized as a kind of transcription factor that plays an important role in cell division, DNA damage repair, and cell size regulation. However, its stress response has not been well revealed. RESULTS: In this study, ZmE2F members were comprehensively identified in the maize genome, and 21 ZmE2F genes were identified, including eight E2F subclade members, seven DEL subfamily genes, and six DP genes. All ZmE2F proteins possessed the DNA-binding domain (DBD) characterized by conserved motif 1 with the RRIYD sequence. The ZmE2F genes were unevenly distributed on eight maize chromosomes, showed diversity in gene structure, expanded by gene duplication, and contained abundant stress-responsive elements in their promoter regions. Subsequently, the ZmE2F6 gene was cloned and functionally verified in drought response. The results showed that the ZmE2F6 protein interacted with ZmPP2C26, localized in the nucleus, and responded to drought treatment. The overexpression of ZmE2F6 enhanced drought tolerance in transgenic Arabidopsis with longer root length, higher survival rate, and biomass by upregulating stress-related gene transcription. CONCLUSIONS: This study provides novel insights into a greater understanding and functional study of the E2F family in the stress response.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Arabidopsis/genética , Regiões Promotoras Genéticas , Cromossomos de Plantas/genética
3.
Biochem Biophys Res Commun ; 720: 150086, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38761478

RESUMO

Root-knot nematode (RKN) is one of the most damaging plant pathogen in the world. They exhibit a wide host range and cause serious crop losses. The cell wall, encasing every plant cell, plays a crucial role in defending of RKN invasion. Expansins are a group of cell wall proteins inducing cell wall loosening and extensibility. They are widely involved in the regulation of plant growth and the response to biotic and abiotic stresses. In this study, we have characterized the biological function of tobacco (Nicotiana tabacum) NtEXPA7, the homologue of Solyc08g080060.2 (SlEXPA18), of which the transcription level was significantly reduced in susceptible tomato upon RKN infection. The expression of NtEXPA7 was up-regulated after inoculation of RKNs. The NtEXPA7 protein resided in the cell wall. Overexpression of NtEXPA7 promoted the seedling growth of transgenic tobacco. Meanwhile the increased expression of NtEXPA7 was beneficial to enhance the resistance against RKNs. This study expands the understanding of biological role of expansin in coordinate plant growth and disease resistance.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Plântula , Nicotiana/parasitologia , Nicotiana/genética , Nicotiana/metabolismo , Animais , Plântula/parasitologia , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Resistência à Doença/genética , Plantas Geneticamente Modificadas/parasitologia , Tylenchoidea/fisiologia , Parede Celular/metabolismo , Parede Celular/parasitologia , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética
4.
BMC Plant Biol ; 24(1): 246, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575869

RESUMO

BACKGROUND: Molecular mechanisms in response to drought stress are important for the genetic improvement of maize. In our previous study, nine ZmLAZ1 members were identified in the maize genome, but the function of ZmLAZ1 was largely unknown. RESULTS: The ZmLAZ1-3 gene was cloned from B73, and its drought-tolerant function was elucidated by expression analysis in transgenic Arabidopsis. The expression of ZmLAZ1-3 was upregulated by drought stress in different maize inbred lines. The driving activity of the ZmLAZ1-3 promoter was induced by drought stress and related to the abiotic stress-responsive elements such as MYB, MBS, and MYC. The results of subcellular localization indicated that the ZmLAZ1-3 protein localized on the plasma membrane and chloroplast. The ectopic expression of the ZmLAZ1-3 gene in Arabidopsis significantly reduced germination ratio and root length, decreased biomass, and relative water content, but increased relative electrical conductivity and malondialdehyde content under drought stress. Moreover, transcriptomics analysis showed that the differentially expressed genes between the transgenic lines and wild-type were mainly associated with response to abiotic stress and biotic stimulus, and related to pathways of hormone signal transduction, phenylpropanoid biosynthesis, mitogen-activated protein kinase signaling, and plant-pathogen interaction. CONCLUSION: The study suggests that the ZmLAZ1-3 gene is a negative regulator in regulating drought tolerance and can be used to improve maize drought tolerance via its silencing or knockout.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Resistência à Seca , Zea mays/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
5.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593897

RESUMO

Most eukaryotes possess two RecA-like recombinases (ubiquitous Rad51 and meiosis-specific Dmc1) to promote interhomolog recombination during meiosis. However, some eukaryotes have lost Dmc1. Given that mammalian and yeast Saccharomyces cerevisiae (Sc) Dmc1 have been shown to stabilize recombination intermediates containing mismatches better than Rad51, we used the Pezizomycotina filamentous fungus Trichoderma reesei to address if and how Rad51-only eukaryotes conduct interhomolog recombination in zygotes with high sequence heterogeneity. We applied multidisciplinary approaches (next- and third-generation sequencing technology, genetics, cytology, bioinformatics, biochemistry, and single-molecule biophysics) to show that T. reesei Rad51 (TrRad51) is indispensable for interhomolog recombination during meiosis and, like ScDmc1, TrRad51 possesses better mismatch tolerance than ScRad51 during homologous recombination. Our results also indicate that the ancestral TrRad51 evolved to acquire ScDmc1-like properties by creating multiple structural variations, including via amino acid residues in the L1 and L2 DNA-binding loops.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Recombinação Homóloga , Hypocreales/metabolismo , Meiose , Rad51 Recombinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Hypocreales/genética , Rad51 Recombinase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Parasitology ; 150(11): 1070-1075, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37846821

RESUMO

Optical microscopy is the gold standard technique used to confirm the diagnosis of scabies. Multiple diagnostic features of the pathogen Sarcoptes scabiei var. hominis (S. scabiei) can be identified under a microscope and classified into 3 categories: mites, eggs and fecal pellets. However, mite and eggshell fragments can also be observed, which have been ignored in the 2020 International Alliance for the Control of Scabies (IACS) Criteria and by most researchers. In this study, we propose a novel morphological classification method that classifies multiple diagnostic features into 5 categories and 7 subcategories. Our results revealed that 65.2% (1893 of 2896) of the positive cases were confirmed through the identification of mites, eggs or fecal pellets, whereas up to 34.6% (1003 of 2896) of the positive cases were confirmed through the identification of mite or eggshell fragments. Therefore, the important diagnostic values of mite and eggshell fragments should be emphasized. Importantly, for the first time, mite and eggshell fragments were classified into 7 subcategories, some of which are easily ignored or confused with contaminating artefacts. We believe that this novel morphological classification method will be beneficial for operator training in interpreting slides and in improving the 2020 IACS Criteria.


Assuntos
Sarcoptes scabiei , Escabiose , Animais , Humanos , Escabiose/diagnóstico , Microscopia
7.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762337

RESUMO

The Pumilio (Pum) RNA-binding protein family regulates post-transcription and plays crucial roles in stress response and growth. However, little is known about Pum in plants. In this study, a total of 19 ZmPum genes were identified and classified into two groups in maize. Although each ZmPum contains the conserved Pum domain, the ZmPum members show diversity in the gene and protein architectures, physicochemical properties, chromosomal location, collinearity, cis-elements, and expression patterns. The typical ZmPum proteins have eight α-helices repeats, except for ZmPum2, 3, 5, 7, and 14, which have fewer α-helices. Moreover, we examined the expression profiles of ZmPum genes and found their involvement in kernel development. Except for ZmPum2, ZmPum genes are expressed in maize embryos, endosperms, or whole seeds. Notably, ZmPum4, 7, and 13 exhibited dramatically high expression levels during seed development. The study not only contributes valuable information for further validating the functions of ZmPum genes but also provides insights for improvement and enhancing maize yield.


Assuntos
Endosperma , Zea mays , Zea mays/genética , Sementes/genética
8.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430848

RESUMO

Biotic constraints, including pathogenic fungi, viruses and bacteria, herbivory insects, as well as parasitic nematodes, cause significant yield loss and quality deterioration of crops. The effect of conventional management of these biotic constraints is limited. The advances in transgenic technologies provide a direct and directional approach to improve crops for biotic resistance. More than a hundred transgenic events and hundreds of cultivars resistant to herbivory insects, pathogenic viruses, and fungi have been developed by the heterologous expression of exogenous genes and RNAi, authorized for cultivation and market, and resulted in a significant reduction in yield loss and quality deterioration. However, the exploration of transgenic improvement for resistance to bacteria and nematodes by overexpression of endogenous genes and RNAi remains at the testing stage. Recent advances in RNAi and CRISPR/Cas technologies open up possibilities to improve the resistance of crops to pathogenic bacteria and plant parasitic nematodes, as well as other biotic constraints.


Assuntos
Produtos Agrícolas , Nematoides , Animais , Plantas Geneticamente Modificadas/genética , Produtos Agrícolas/genética , Interferência de RNA , Nematoides/genética
9.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682701

RESUMO

Heat stress (HS) seriously restricts the growth and development of plants. When plants are exposed to extreme high temperature, the heat stress response (HSR) is activated to enable plants to survive. Sessile plants have evolved multiple strategies to sense and cope with HS. Previous studies have established that PHYTOCHROME INTERACTING FACTOR 4 (PIF4) acts as a key component in thermomorphogenesis; however, whether PIF4 regulates plant thermotolerance and the molecular mechanism linking this light transcriptional factor and HSR remain unclear. Here, we show that the overexpression of PIF4 indeed provides plants with a stronger basal thermotolerance and greatly improves the survival ability of Arabidopsis under severe HS. Via phylogenetic analysis, we identified two sets (six) of PIF4 homologs in wheat, and the expression patterns of the PIF4 homologs were conservatively induced by heat treatment in both wheat and Arabidopsis. Furthermore, the PIF4 protein was accumulated under heat stress and had an identical expression level. Additionally, we found that the core regulator of HSR, HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), was highly responsive to light and heat. Followed by promoter analysis and ChIP-qPCR, we further found that PIF4 can bind directly to the G-box motifs of the HSFA2 promoter. Via effector-reporter assays, we found that PIF4 binding could activate HSFA2 gene expression, thereby resulting in the activation of other HS-inducible genes, such as heat shock proteins. Finally, the overexpression of PIF4 led to a stronger basal thermotolerance under non-heat-treatment conditions, thereby resulting in an enhanced tolerance to severe heat stress. Taken together, our findings propose that PIF4 is linked to heat stress signaling by directly binding to the HSFA2 promoter and triggering the HSR at normal temperature conditions to promote the basal thermotolerance. These functions of PIF4 provide a candidate direction for breeding heat-resistant crop cultivars.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Termotolerância , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/genética , Temperatura Alta , Filogenia , Fitocromo/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Termotolerância/genética
10.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430489

RESUMO

Stress-associated proteins (SAPs) are a kind of zinc finger protein with an A20/AN1 domain and contribute to plants' adaption to various abiotic and biological stimuli. However, little is known about the SAP genes in maize (Zea mays L.). In the present study, the SAP genes were identified from the maize genome. Subsequently, the protein properties, gene structure and duplication, chromosomal location, and cis-acting elements were analyzed by bioinformatic methods. Finally, their expression profiles under osmotic stresses, including drought and salinity, as well as ABA, and overexpression in Saccharomyces cerevisiae W303a cells, were performed to uncover the potential function. The results showed that a total of 10 SAP genes were identified and named ZmSAP1 to ZmSAP10 in maize, which was unevenly distributed on six of the ten maize chromosomes. The ZmSAP1, ZmSAP4, ZmSAP5, ZmSAP6, ZmSAP7, ZmSAP8 and ZmSAP10 had an A20 domain at N terminus and AN1 domain at C terminus, respectively. Only ZmSAP2 possessed a single AN1 domain at the N terminus. ZmSAP3 and ZmSAP9 both contained two AN1 domains without an A20 domain. Most ZmSAP genes lost introns and had abundant stress- and hormone-responsive cis-elements in their promoter region. The results of quantitative real-time PCR showed that all ZmSAP genes were regulated by drought and saline stresses, as well as ABA induction. Moreover, heterologous expression of ZmSAP2 and ZmSAP7 significantly improved the saline tolerance of yeast cells. The study provides insights into further underlying the function of ZmSAPs in regulating stress response in maize.


Assuntos
Proteínas de Choque Térmico , Zea mays , Zea mays/genética , Zea mays/metabolismo , Pressão Osmótica , Proteínas de Choque Térmico/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Sequência de Aminoácidos
11.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36555363

RESUMO

Early responsive dehydration (ERD) genes can be rapidly induced by dehydration. ERD15 genes have been confirmed to regulate various stress responses in plants. However, the maize ERD15 members have not been characterized. In the present study, a total of five ZmERD15 genes were identified from the maize genome and named ZmERD15a, ZmERD15b, ZmERD15c, ZmERD15d, and ZmERD15e. Subsequently, their protein properties, gene structure and duplication, chromosomal location, cis-acting elements, subcellular localization, expression pattern, and over-expression in yeast were analyzed. The results showed that the ZmERD15 proteins were characterized by a similar size (113-159 aa) and contained a common domain structure, with PAM2 and adjacent PAE1 motifs followed by an acidic region. The ZmERD15 proteins exhibited a close phylogenetic relationship with OsERD15s from rice. Five ZmERD15 genes were distributed on maize chromosomes 2, 6, 7, and 9 and showed a different exon-intron organization and were expanded by duplication. Besides, the promoter region of the ZmERD15s contained abundant cis-acting elements that are known to be responsive to stress and hormones. Subcellular localization showed that ZmERD15b and ZmERD15c were localized in the nucleus. ZmERD15a and ZmERD15e were localized in the nucleus and cytoplasm. ZmERD15d was localized in the nucleus and cell membrane. The results of the quantitative real-time PCR (qRT-PCR) showed that the expression of the ZmERD15 genes was regulated by PEG, salinity, and ABA. The heterologous expression of ZmERD15a, ZmERD15b, ZmERD15c, and ZmERD15d significantly enhanced salt tolerance in yeast. In summary, a comprehensive analysis of ZmERD15s was conducted in the study. The results will provide insights into further dissecting the biological function and molecular mechanism of ZmERD15s regulating of the stress response in maize.


Assuntos
Saccharomyces cerevisiae , Zea mays , Zea mays/genética , Zea mays/metabolismo , Regiões Promotoras Genéticas , Filogenia , Saccharomyces cerevisiae/metabolismo , Desidratação/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
12.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682705

RESUMO

The BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1(BZR1) transcription factors play crucial roles in plant growth, development, and stress response. However, little is known about the function of maize's BES1/BZR1s. In this study, the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were cloned from maize's inbred line, B73, and they were functionally evaluated by analyzing their expression pattern, subcellular localization, transcriptional activation activity, as well as their heterologous expression in Arabidopsis, respectively. The results of the qRT-PCR showed that the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were predominantly expressed in the root, and their expression was significantly down-regulated by drought stress. The ZmBES1/BZR1-3 and ZmBES1/BZR1-9 proteins localized in the nucleus but showed no transcriptional activation activity as a monomer. Subsequently, it was found that the heterologous expression of the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes in Arabidopsis decreased drought tolerance, respectively. The transgenic lines showed a more serious wilting phenotype, shorter root length, lower fresh weight, and higher relative electrolyte leakage (REL) and malondialdehyde (MDA) content compared to the control under drought stress. The RNA-sequencing data showed that the 70.67% and 93.27% differentially expressed genes (DEGs) were significantly down-regulated in ZmBES1/BZR1-3 and ZmBES1/BZR1-9 transgenic Arabidopsis, respectively. The DEGs of ZmBES1/BZR1-3 gene's expressing lines were mainly associated with oxidative stress response and amino acid metabolic process and enriched in phenylpropanoid biosynthesis and protein processing in the endoplasmic reticulum. But the DEGs of the ZmBES1/BZR1-9 gene's expressing lines were predominantly annotated with water deprivation, extracellular stimuli, and jasmonic acid and enriched in phenylpropanoid biosynthesis and plant hormone signal transduction. Moreover, ZmBES1/BZR1-9 increased stomatal aperture in transgenic Arabidopsis under drought stress. This study indicates that ZmBES1/BZR1-3 and ZmBES1/BZR1-9 negatively regulate drought tolerance via different pathways in transgenic Arabidopsis, and it provides insights into the underlying the function of BES1/BZR1s in crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/metabolismo
13.
J Exp Bot ; 72(5): 1714-1726, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33206180

RESUMO

The BES1/BZR1 transcription factors regulate the expression of genes responsive to brassinosteroids and play pivotal roles in plant development, but their role in regulating kernel development in maize remains unclear. In this study, we found that ZmBES1/BZR1-5 positively regulates kernel size. Association analysis of candidate genes in 513 diverse maize inbred lines indicated that three SNPs related to ZmBES1/BZR1-5 were significantly associated with kernel width and whilst four SNPs were related to 100-kernel weight. Overexpression of ZmBES1/BZR1-5 in Arabidopsis and rice both significantly increased seed size and weight, and smaller kernels were produced in maize Mu transposon insertion and EMS mutants. The ZmBES1/BZR1-5 protein locates in the nucleus, contains bHLH and BAM domains, and shows no transcriptional activity as a monomer but forms a homodimer through the BAM domain. ChIP-sequencing analysis, and yeast one-hybrid and dual-luciferase assays demonstrated that the protein binds to the promoters of AP2/EREBP genes (Zm00001d010676 and Zm00001d032077) and inhibits their transcription. cDNA library screening showed that ZmBES1/BZR1-5 interacts with casein kinase II subunit ß4 (ZmCKIIß4) and ferredoxin 2 (ZmFdx2) in vitro and in vivo, respectively. Taken together, our study suggests that ZmBES1/BZR1-5 positively regulates kernel size, and provides new insights into understanding the mechanisms of kernel development in maize.


Assuntos
Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Zea mays/genética , Brassinosteroides , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Zea mays/metabolismo
14.
Acta Pharmacol Sin ; 42(12): 2058-2068, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33654217

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease with a poor prognosis. Emerging evidence has revealed that targeting senescent cells may be a potential treatment for IPF. In this study, we aimed to explore whether roxithromycin (RXM) can improve lung fibrosis by targeting senescent cells. First, we confirmed the ability of RXM to selectively kill senescent cells by inducing apoptosis and inhibiting the expression of senescence-associated secretory phenotype (SASP) factors, suggesting the potential role of RXM as a "senolytic" and "senomorphic" drug. Next, we observed that TGF-ß- and senescent cell-induced lung fibroblast activation was inhibited by RXM treatment, which prompted us to further investigate its effect in vivo. In a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, RXM was shown to attenuate lung injury, inflammation, and fibrosis. Furthermore, the senescent phenotype of lung tissues induced by BLM was significantly diminished after RXM administration, indicating the potential of RXM as an antifibrotic and antisenescent agent. Interestingly, NADPH oxidase 4 (NOX4), implicated in lung fibrosis and cell senescence, was shown to be inhibited by RXM treatments. The antifibroblast activation and antisenescent effects of RXM were abolished in NOX4 knockdown cells, demonstrating that RXM may ameliorate BLM-induced pulmonary fibrosis by targeting senescent cells mediated by the NOX4 pathway. Collectively, these data demonstrated that RXM may be a potential clinical agent for IPF and further supported the notion that targeting cellular senescence is a promising treatment for progressive age-related disease.


Assuntos
Senescência Celular/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Roxitromicina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Bleomicina , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , NADPH Oxidase 4/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/complicações , Fibrose Pulmonar/patologia , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos
15.
Int J Mol Sci ; 21(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028614

RESUMO

The BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) transcription factors, key components in the brassinosteroid signaling pathway, play pivotal roles in plant growth and development. However, the function of BES1/BZR1 in crops during stress response remains poorly understood. In the present study, we characterized ZmBES1/BZR1-5 from maize, which was localized to the nucleus and was responsive to abscisic acid (ABA), salt and drought stresses. Heterologous expression of ZmBES1/BZR1-5 in transgenic Arabidopsis resulted in decreased ABA sensitivity, facilitated shoot growth and root development, and enhanced salt and drought tolerance with lower malondialdehyde (MDA) content and relative electrolyte leakage (REL) under osmotic stress. The RNA sequencing (RNA-seq) analysis revealed that 84 common differentially expressed genes (DEGs) were regulated by ZmBES1/BZR1-5 in transgenic Arabidopsis. Subsequently, gene ontology and KEGG pathway enrichment analyses showed that the DEGs were enriched in response to stress, secondary metabolism and metabolic pathways. Furthermore, 30 DEGs were assigned to stress response and possessed 2-15 E-box elements in their promoters, which could be potentially recognized and bound by ZmBES1/BZR1-5. Taken together, our results reveal that the ZmBES1/BZR1-5 transcription factor positively regulates salt and drought tolerance by binding to E-box to induce the expression of downstream stress-related genes. Therefore, our study contributes to the better understanding of BES1/BZR1 function in the stress response of plants.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Estresse Fisiológico , Zea mays/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Resistência a Medicamentos , Pressão Osmótica , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal
16.
Physiol Mol Biol Plants ; 25(1): 277-287, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30804649

RESUMO

To avoid the unregulated overexpression of the exogenous genes, specific or inducible expression is necessary for some exogenous genes in transgenic plants. But little is known about organ- or tissue-specific promoters in maize. In the present study, the expression of a maize pentatricopeptide repeat (PPR) protein encoding gene, GRMZM2G129783, was analyzed by RNA-sequencing data and confirmed by quantitative real time PCR. The results showed that the PPR GRMZM2G129783 gene specifically expressed in vegetative organs. Consequently, a 1830 bp sequence upstream of the start codon of the promoter for GRMZM2G129783 gene was isolated from maize genome (P 1830 ). To validate whether the promoter possesses the vegetative organ-specificity, the full-length and three 5'-end deletion fragments of P 1830 of different length (1387, 437, and 146 bp) were fused with glucuronidase (GUS) gene to generate promoter::GUS constructs and transformed into tobacco. The transient expression and fluorometric GUS assay in transgenic tobacco showed that all promoter could drive the expression of the GUS gene, the - 437 to - 146 bp region possessed some crucial elements for root-specific expression, and the shortest and optimal sequence to maintain transcription activity was 146 and 437 bp in length, respectively. These results indicate that the promoter of the PPR GRMZM2G129783 gene is a vegetative organ-specific promoter and will be useful in transgenic modification of commercial crops for moderate specific expression after further evaluation in monocotyledons.

17.
Plant Mol Biol ; 96(3): 245-263, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29344831

RESUMO

KEY MESSAGE: We defined a comprehensive core ABA signaling network in monocot maize, including the gene expression, subcellular localization and interaction network of ZmPYLs, ZmPP2Cs, ZmSnRK2s and the putative substrates. The phytohormone abscisic acid (ABA) plays an important role in plant developmental processes and abiotic stress responses. In Arabidopsis, ABA is sensed by the PYL ABA receptors, which leads to binding of the PP2C protein phosphatase and activation of the SnRK2 protein kinases. These components functioning diversely and redundantly in ABA signaling are little known in maize. Using Arabidopsis pyl112458 and snrk2.2/3/6 mutants, we identified several ABA-responsive ZmPYLs and ZmSnRK2s, and also ZmPP2Cs. We showed the gene expression, subcellular localization and interaction network of ZmPYLs, ZmPP2Cs, and ZmSnRK2s, and the isolation of putative ZmSnRK2 substrates by mass spectrometry in monocot maize. We found that the ABA dependency of PYL-PP2C interactions is contingent on the identity of the PP2Cs. Among 238 candidate substrates for ABA-activated protein kinases, 69 are putative ZmSnRK2 substrates. Besides homologs of previously reported putative AtSnRK2 substrates, 23 phosphoproteins have not been discovered in the dicot Arabidopsis. Thus, we have defined a comprehensive core ABA signaling network in monocot maize and shed new light on ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Transdução de Sinais , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Mapas de Interação de Proteínas , Zea mays/genética , Zea mays/crescimento & desenvolvimento
18.
Emerg Infect Dis ; 24(6): 1147-1149, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29774853

RESUMO

A highly pathogenic avian influenza A(H5N6) virus of clade 2.3.4.4 was detected in a domestic duck found dead in Taiwan during February 2017. The endemic situation and continued evolution of various reassortant highly pathogenic avian influenza viruses in Taiwan warrant concern about further reassortment and a fifth wave of intercontinental spread.


Assuntos
Genótipo , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Vírus Reordenados , Animais , Aves , História do Século XXI , Humanos , Vírus da Influenza A/patogenicidade , Influenza Humana/história , RNA Viral , Taiwan/epidemiologia
19.
Brain Behav Immun ; 72: 101-113, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29885943

RESUMO

The neuronal innate immune system recognizes endogenous danger signals and regulates neuronal development and function. Toll-like receptor 7 (TLR7), one of the TLRs that trigger innate immune responses in neurons, controls neuronal morphology. To further assess the function of TLR7 in the brain, we applied next generation sequencing to investigate the effect of Tlr7 deletion on gene expression in hippocampal and cortical mixed cultures and on mouse behaviors. Since previous in vivo study suggested that TLR7 is more critical for neuronal morphology at earlier developmental stages, we analyzed two time-points (4 and 18 DIV) to represent young and mature neurons, respectively. At 4 DIV, Tlr7 KO neurons exhibited reduced expression of genes involved in neuronal development, synaptic organization and activity and behaviors. Some of these Tlr7-regulated genes are also associated with multiple neurological and neuropsychiatric diseases. TLR7-regulated transcriptomic profiles differed at 18 DIV. Apart from neuronal genes, genes related to glial cell development and differentiation became sensitive to Tlr7 deletion at 18 DIV. Moreover, Tlr7 KO mice exhibited altered behaviors in terms of anxiety, aggression, olfaction and contextual fear memory. Electrophysiological analysis further showed an impairment of long-term potentiation in Tlr7 KO hippocampus. Taken together, these results indicate that TLR7 regulates neural development and brain function, even in the absence of infectious or pathogenic molecules. Our findings strengthen evidence for the role of the neuronal innate immune system in fine-tuning neuronal morphology and activity and implicate it in neuropsychiatric disorders.


Assuntos
Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Memória/fisiologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Agressão/fisiologia , Animais , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Depressão/metabolismo , Medo/fisiologia , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese , Neuroglia/fisiologia , Neurônios/fisiologia , Olfato/genética , Olfato/fisiologia , Transcriptoma
20.
Appl Microbiol Biotechnol ; 102(4): 1567-1574, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29308529

RESUMO

Trichoderma reesei (syn. Hypocrea jecorina) is a filamentous ascomycete. Due to its capability of producing large amounts of lignocellulolytic enzymes and various heterologous proteins, this fungus has been widely used for industrial applications for over 70 years. It is also a model organism for lignocellulosic biomass degradation and metabolic engineering. Recently, we experimentally and computationally demonstrated that Trichoderma reesei exhibits high homology pairing and repeat-induced point (RIP) mutation activities at a premeiotic stage, i.e., between fertilization and karyogamy or premeiotic DNA replication. The discovery of RIP in Trichoderma reesei not only reveals significant impacts of sexual reproduction on evolution and chromosome architecture but also provides intriguing perspectives for industrial strain improvement. This review emphasizes two major points about RIP and RIP-like processes in Pezizomycotina fungi. First, the molecular mechanisms of RIP and RIP-like processes in Trichoderma reesei and other Pezizomycotina fungi are apparently distinct from those originally described in the model fungus Neurospora crassa. Second, orthologs of the rid1 (deficient in RIP-1) DNA methyltransferase gene were shown to be essential for sexual development in at least four Pezizomycotina fungi, including Trichoderma reesei. In contrast, rid1 is dispensable for Neurospora crassa sexual development. We suggest that the rid1-like gene products and/or their DNA methyltransferase activities play critical roles in promoting fungal sexual development. The Neurospora crassa rid1 gene might have lost this evolutionarily conserved function.


Assuntos
Mutação Puntual , Sequências Repetitivas de Ácido Nucleico , Trichoderma/genética , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Recombinação Homóloga , Meiose , Trichoderma/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA