Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
PLoS Pathog ; 18(8): e1010693, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35914009

RESUMO

Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC's capture, whereas the low-virulence (LV) counterparts confer partial protection against KC's capture. Moreover, KC's capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination.


Assuntos
Infecções por Klebsiella , Sepse , Animais , Cápsulas Bacterianas , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Células de Kupffer , Fígado , Camundongos , Polissacarídeos
2.
Phys Chem Chem Phys ; 26(9): 7674-7687, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372006

RESUMO

The efficient conversion of nitrogen into ammonia plays a significant role in our modern society. Therefore, the design and development of associated catalysts have become an area of major research interest. Nowadays, an increasing number of studies have been exploring single-atom or double-atom metal-free electrocatalysts for the N2 reduction reaction, where regulating the precise number of catalyst atoms anchored on the substrate posed a real challenge. Herein, with density functional theory (DFT) simulations, this study investigated the activity of single and multiple B atom doped monolayer WS2 catalysts and observed superior efficiencies for nitrogen fixation and reduction. Computational results reveal that these novel catalysts have excellent thermodynamic stability, suitable adsorption of N2, superior catalytic activity and high selectivity for the nitrogen reduction reaction. Notably, this study clearly illustrates that the steric hindrance arising from the adjacent atoms of catalytic sites can be an effective route for manipulating the catalytic performance, offering new insights for the synthesis of high efficiency catalysts. In summary, this series of novel boron doped monolayer WS2 catalysts does not require precise control of the number of catalytic atoms on the substrate, making their preparation easier.

3.
Phys Chem Chem Phys ; 26(29): 19863-19875, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38989787

RESUMO

The N-oxide strategy plays a crucial role in regulating the performance and safety of energetic materials. This study mainly addresses the question of how the N-oxide group affects the properties of azobistriazole and its derivatives. Our findings indicate that the N-oxide group can increase the density of the system, and its effect on the enthalpy of formation depends on the specific situation. The N-oxide groups can effectively improve the density and energetic properties. Some of the energetic derivatives containing N-oxide groups have a density as high as 2.097 g cm-3 (D3-NO(2)) and a detonation velocity as high as 10 275 m s-1 (C6-NO(2)). The effect of N-oxide groups on the enthalpy of formation depends on the specific circumstances. The effect of N-oxide groups on the stability of azobistriazole energetic derivatives is relatively complex. Among them, the N-oxide group on the triazole ring has an opposite effect on the bond dissociation enthalpy of functional groups. When the N-oxide group is on the 1,2,3-triazole ring, it can improve C-R (R is equal to C(NO2)3, NF2, NHNO2, NO2, and ONO2 respectively) bond dissociation enthalpy, and when it is on the 1,2,4-triazole ring, it will reduce the C-R bond dissociation enthalpy. When the N-oxide group is located on the azo bond, the bond dissociation enthalpy of the azo bond will be significantly reduced. This article systematically explores the effect of N-oxide groups on the properties of azobistriazole energetic derivatives, which will help people better utilize N-oxide groups to design and synthesize new energetic materials.

4.
Biochemistry ; 62(11): 1589-1593, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184546

RESUMO

Fragment antigen-binding domains of antibodies (Fabs) are powerful probes of structure-function relationships of assembly line polyketide synthases (PKSs). We report the discovery and characterization of Fabs interrogating the structure and function of the ketosynthase-acyltransferase (KS-AT) core of Module 2 of the 6-deoxyerythronolide B synthase (DEBS). Two Fabs (AC2 and BB1) were identified to potently inhibit the catalytic activity of Module 2. Both AC2 and BB1 were found to modulate ACP-mediated reactions catalyzed by this module, albeit by distinct mechanisms. AC2 primarily affects the rate (kcat), whereas BB1 increases the KM of an ACP-mediated reaction. A third Fab, AA5, binds to the KS-AT fragment of DEBS Module 2 without altering either parameter; it is phenotypically reminiscent of a previously characterized Fab, 1B2, shown to principally recognize the N-terminal helical docking domain of DEBS Module 3. Crystal structures of AA5 and 1B2 bound to the KS-AT fragment of Module 2 were solved to 2.70 and 2.65 Å resolution, respectively, and revealed entirely distinct recognition features of the two antibodies. The new tools and insights reported here pave the way toward advancing our understanding of the structure-function relationships of DEBS Module 2, arguably the most well-studied module of an assembly line PKS.


Assuntos
Eritromicina , Policetídeo Sintases , Policetídeo Sintases/química , Aciltransferases/química , Anticorpos
5.
Small ; 19(38): e2302975, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37194973

RESUMO

Considering the significant application of acetylene (C2 H2 ) in the manufacturing and petrochemical industries, the selective capture of impurity carbon dioxide (CO2 ) is a crucial task and an enduring challenge. Here, a flexible metal-organic framework (Zn-DPNA) accompanied by a conformation change of the Me2 NH2 + ions in the framework is reported. The solvate-free framework provides a stepped adsorption isotherm and large hysteresis for C2 H2 , but type-I adsorption for CO2 . Owing to their uptakes difference before gate-opening pressure, Zn-DPNA demonstrated favorable inverse CO2 /C2 H2 separation. According to molecular simulation, the higher adsorption enthalpy of CO2 (43.1 kJ mol-1 ) is due to strong electrostatic interactions with Me2 NH2 + ions, which lock the hydrogen-bond network and narrow pores. Furthermore, the density contours and electrostatic potential verifies the middle of the cage in the large pore favors C2 H2 and repels CO2 , leading to the expansion of the narrow pore and further diffusion of C2 H2 . These results provide a new strategy that optimizes the desired dynamic behavior for one-step purification of C2 H2 .

6.
Inorg Chem ; 62(46): 19043-19051, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37939347

RESUMO

Natural gas plays a crucial role in daily and industrial production, but the impurities contained in natural gas limit its further use. It is very important to develop adsorbents that can separate CH4 from multicomponent mixtures, but there are still many challenges and problems. Herein, a novel porous MOF {[Mn5(pbdia)2(CO3)(H2O)2] ↔ 5H2O ↔ 2DMF}n (pbdia = 2,2'-(5-carboxy-1,3-phenylene)bis(oxy) diterephthalic acid) was successfully synthesized based on a flexible pentacarboxylic acid ligand and a unique pentanuclear Mn5(COO)10CO3 cluster. The MOF reveals a 3D porous structure with 2D intersecting channels, which shows high C3H8, C2H6, and CO2 adsorption capacities and affinities over CH4. Moreover, the ideal adsorption solution theory selectivities of C3H8/CH4, C2H6/CH4, and CO2/CH4 can reach 263.0, 27.0, and 7.7, respectively, suggesting a potential for removing the low content of C3H8, C2H6, and CO2 from pipeline natural gas, which was further confirmed by breakthrough curves and GCMC simulations.

7.
Inorg Chem ; 61(44): 17634-17640, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36270023

RESUMO

The accurate design and systematic engineering of MOFs is a large challenge due to the randomness of the synthesis process. Isoreticular chemistry provides a powerful approach for the regulation of pore environment in a more predictable and precise way to systematically control gas/vapor adsorption performances. Herein, utilizing an effective strategy of altering the "pillared" motifs of pillared layer structures, three isoreticular ultramicroporous MOFs were successfully constructed. Combined with the reported parent MOFs and two other recorded isoreticular MOFs modified with -NH2 and -CH3, gas and vapor uptake performances of this family of isoreticular pillared layer MOFs were systematically explored.

8.
J Cardiothorac Vasc Anesth ; 36(4): 1014-1020, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34389211

RESUMO

OBJECTIVES: The existing literature has shown conflicting results regarding the association between preoperative statin exposure and the risk of postoperative cardiac surgery-associated acute kidney injury (CSA-AKI). DESIGN: A single-center retrospective observational study. SETTING: A single, large, tertiary care center. PARTICIPANTS: Adult patients undergoing open cardiac surgery between January 1, 2012 and January 1, 2019. INTERVENTIONS: AKI was defined using the Kidney Disease: Improving Global Outcomes criteria. A multivariate logistic regression analysis and propensity score-matched analysis were used to study the association. MEASUREMENTS AND MAIN RESULTS: A total of 58,399 patient charts were retrospectively reviewed. The preoperative statin exposure cohort had a lower prevalence of all stages of CSA-AKI (30.7% v 36.3%, p < 0.001) and stage 3 CSA-AKI (0.9% v 2.1%, p < 0.001). After adjusting for confounding factors, preoperative statin exposure was a protective factor against all stages of postoperative CSA-AKI (odds ratio [OR], 0.885, 95% confidence interval [CI], 0.852-0.920, p < 0.001) and stage 3 CSA-AKI in adults (OR, 0.671, 95% CI, 0.567-0.795, p < 0.001). A propensity score-matched analysis showed that the preoperative statin exposure cohort had a lower risk of all stages of postoperative CSA-AKI (30.7% v 35.3%, p < 0.001) and stage 3 CSA-AKI (0.9% v 2.2%, p < 0.001) than the control cohort. CONCLUSIONS: Preoperative statin exposure was associated with all stages of postoperative CSA-AKI and stage 3 CSA-AKI.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Inibidores de Hidroximetilglutaril-CoA Redutases , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Adulto , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Complicações Pós-Operatórias/induzido quimicamente , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Medição de Risco/métodos , Fatores de Risco
9.
Phys Chem Chem Phys ; 23(32): 17502-17511, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34359072

RESUMO

The electronic structures and optical properties of a novel class of hybrid binary Janus materials derived from IV-V groups were investigated using first principles calculations. The computational results demonstrated that, except for Ge2NAs, all the other five structures of M2XY monolayers (M = Si, Ge; X, Y = N, P, As; X ≠ Y) have excellent thermal and dynamical stabilities. Janus Si2NP, Si2NAs, Si2PAs and Ge2NP are semiconductors with direct band gaps spanning the range between 0.82 and 2.49 eV. Notably, the hybrid M2XY materials exhibit highly efficient absorption within the visible light region, which are greatly higher than their pristine MX structures. Janus Si2PAs and Ge2PAs possess appropriate band edge alignments that straddle the water redox potentials in the pH range from 0 to 14, making them promising photocatalysts for water splitting under visible light. Our calculations further demonstrate that the catalytic selectivity for the water splitting reaction could be achieved through the hybrid Janus M2XY, where, for instance, Ge2NP appears to facilitate only the oxidation, but not the reduction of water under certain conditions. This outcome provides a new route for the design of novel photocatalysts with improved efficiency and selectivity.

10.
BMC Bioinformatics ; 21(1): 272, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611376

RESUMO

BACKGROUND: Chromatin 3D conformation plays important roles in regulating gene or protein functions. High-throughout chromosome conformation capture (3C)-based technologies, such as Hi-C, have been exploited to acquire the contact frequencies among genomic loci at genome-scale. Various computational tools have been proposed to recover the underlying chromatin 3D structures from in situ Hi-C contact map data. As connected residuals in a polymer, neighboring genomic loci have intrinsic mutual dependencies in building a 3D conformation. However, current methods seldom take this feature into account. RESULTS: We present a method called ShNeigh, which combines the classical MDS technique with local dependence of neighboring loci modeled by a Gaussian formula, to infer the best 3D structure from noisy and incomplete contact frequency matrices. We validated ShNeigh by comparing it to two typical distance-based algorithms, ShRec3D and ChromSDE. The comparison results on simulated Hi-C dataset showed that, while keeping the high-speed nature of classical MDS, ShNeigh can recover the true structure better than ShRec3D and ChromSDE. Meanwhile, ShNeigh is more robust to data noise. On the publicly available human GM06990 Hi-C data, we demonstrated that the structures reconstructed by ShNeigh are more reproducible between different restriction enzymes than by ShRec3D and ChromSDE, especially at high resolutions manifested by sparse contact maps, which means ShNeigh is more robust to signal coverage. CONCLUSIONS: Our method can recover stable structures in high noise and sparse signal settings. It can also reconstruct similar structures from Hi-C data obtained using different restriction enzymes. Therefore, our method provides a new direction for enhancing the reconstruction quality of chromatin 3D structures.


Assuntos
Cromatina/química , Genômica/métodos , Algoritmos , Cromossomos/química , Cromossomos/genética , Loci Gênicos , Humanos , Conformação Molecular , Interface Usuário-Computador
11.
J Am Chem Soc ; 142(35): 14933-14939, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786753

RESUMO

The 6-deoxyerythronolide B synthase (DEBS) is a prototypical assembly line polyketide synthase (PKS) that synthesizes the macrocyclic core of the antibiotic erythromycin. Each of its six multidomain modules presumably sample distinct conformations, as biosynthetic intermediates tethered to their acyl carrier proteins interact with multiple active sites during the courses of their catalytic cycles. The spatiotemporal details underlying these protein dynamics remain elusive. Here, we investigate one aspect of this conformational flexibility using two domain-specific monoclonal antibody fragments (Fabs) isolated from a very large naïve human antibody library. Both Fabs, designated 1D10 and 2G10, were bound specifically and with high affinity to the ketoreductase domain of DEBS module 1 (KR1). Comparative kinetic analysis of stand-alone KR1 as well as a truncated bimodular derivative of DEBS revealed that 1D10 inhibited KR1 activity whereas 2G10 did not. Co-crystal structures of each KR1-Fab complex provided a mechanistic rationale for this difference. A hybrid PKS module harboring KR1 was engineered, whose individual catalytic domains have been crystallographically characterized at high resolution. Size exclusion chromatography coupled to small-angle X-ray scattering (SEC-SAXS) of this hybrid module bound to 1D10 provided further support for the catalytic relevance of the "extended" model of a PKS module. Our findings reinforce the power of monoclonal antibodies as tools to interrogate structure-function relationships of assembly line PKSs.


Assuntos
Aldo-Ceto Redutases/metabolismo , Anticorpos Monoclonais/metabolismo , Sondas Moleculares/metabolismo , Policetídeo Sintases/metabolismo , Aldo-Ceto Redutases/química , Anticorpos Monoclonais/química , Humanos , Lactonas/química , Lactonas/metabolismo , Conformação Molecular , Sondas Moleculares/química , Oxirredução , Policetídeo Sintases/química
12.
Anal Chem ; 92(6): 4592-4599, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32081006

RESUMO

Despite the recent developments on the construction of point-of-care testing (POCT) devices, it is still a big challenge to build portable POCT tools for simple, sensitive, selective, and quantitative determination of disease-related biomarkers. With this in mind, we developed a simple and user-friendly POCT tool for onsite analysis of DNA adenine methyltransferase (Dam) activity by using DNA tetrahedra-based hydrogel to trap glucose-producing enzymes for target recognition and signal transduction. The enzyme-encapsulated DNA hydrogel and the substrate of enzyme were separately modified on papers and then combined onto a commercial glucose test strip for the sensitive evaluation of Dam activity via using a personal glucose meter (PGM) for quantitative signal readout. Taking advantage of the great amount of enzyme entrapped in DNA hydrogel and the high signal amplification ability of enzyme, this POCT tool is capable of highly sensitive and selective determination of Dam activity with a direct detection limit down to 0.001 U/mL, which is superior to that of most previously reported biosensors. Furthermore, this device can also be applied to screen inhibitor and analyze Dam activity in spiked serum samples, indicating the great potential for clinical practice and diagnostic applications. Additionally, all the reactions for Dam assay are performed on paper, which is simple and deliverable to end-users for medical diagnostics at home or in-field.


Assuntos
Automonitorização da Glicemia , Glicemia/análise , DNA/química , Papel , Testes Imediatos , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Hidrogéis/química , Hidrogéis/metabolismo , Tamanho da Partícula , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , Propriedades de Superfície
13.
J Cell Biochem ; 120(7): 11350-11357, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30719761

RESUMO

Hepatocellular carcinoma (HCC) is a highly aggressive carcinoma worldwide. Circular RNAs (circRNAs) have been proved to be involved in the pathogenesis of several carcinomas. circ_0000267 was reported to be elevated in HCC tissue samples by circRNA microarray. In this study, quantitative reverse-transcription polymerase chain reaction was induced to further detect the expression of circ_0000267 in HCC tissues and cells. The clinical significance was also explored by Fisher's exact test, Kaplan-Meier curves and Cox regression analysis. Cell counting kit-8, colony formation, flow cytometry and transwell experiments were conducted on HCC cells to elucidate the functions of circ_0000267. Dual-luciferase reporter assay was induced to explore the mechanism of circ_0000267. Moreover, rescue experiments were also performed on HCC cells. As a result, circ_0000267 was enhanced in HCC tissues and cell lines. This upregulation is associated with patients' clinical severity and poor prognosis. Functionally, circ_0000267 could facilitate cell growth, migration and invasion and attenuate cell apoptosis in HCC cells. Mechanistically, circ_0000267 could directly sponge miR-646 to exert its oncogenic properties. In summary, we identified a novel HCC-associated circRNA in the progression of this fatal disease.

14.
Biochemistry ; 57(43): 6201-6208, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30289692

RESUMO

Assembly line polyketide synthases (PKSs) are large multimodular enzymes responsible for the biosynthesis of diverse antibiotics in bacteria. Structural and mechanistic analysis of these megasynthases can benefit from the discovery of reagents that recognize individual domains or linkers in a site-specific manner. Monoclonal antibodies not only have proven themselves as premier tools in analogous applications but also have the added benefit of constraining the conformational flexibility of their targets in unpredictable but often useful ways. Here we have exploited a library based on the naïve human antibody repertoire to discover a Fab (3A6) that recognizes the terminal thioesterase (TE) domain of the 6-deoxyerythronolide B synthase with high specificity. Biochemical assays were used to verify that 3A6 binding does not inhibit enzyme turnover. The co-crystal structure of the TE-3A6 complex was determined at 2.45 Å resolution, resulting in atomic characterization of this protein-protein recognition mechanism. Fab binding had minimal effects on the structural integrity of the TE. In turn, these insights were used to interrogate via small-angle X-ray scattering the solution-phase conformation of 3A6 complexed to a catalytically competent PKS module and bimodule. Altogether, we have developed a high-affinity monoclonal antibody tool that recognizes the TE domain of the 6-deoxyerythronolide B synthase while maintaining its native function.


Assuntos
Anticorpos Monoclonais/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Anticorpos Monoclonais/imunologia , Catálise , Cristalografia por Raios X , Eritromicina/análogos & derivados , Eritromicina/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Policetídeo Sintases/imunologia , Conformação Proteica , Especificidade por Substrato
15.
J Am Chem Soc ; 140(21): 6518-6521, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29762030

RESUMO

Catalytic modules of assembly-line polyketide synthases (PKSs) have previously been observed in two very different conformations-an "extended" architecture and an "arch-shaped" architecture-although the catalytic relevance of neither has been directly established. By the use of a fully human naïve antigen-binding fragment (Fab) library, a high-affinity antibody was identified that bound to the extended conformation of a PKS module, as verified by X-ray crystallography and tandem size-exclusion chromatography-small-angle X-ray scattering (SEC-SAXS). Kinetic analysis proved that this antibody-stabilized module conformation was fully competent for catalysis of intermodular polyketide chain translocation as well as intramodular polyketide chain elongation and functional group modification of a growing polyketide chain. Thus, the extended conformation of a PKS module is fully competent for all of its essential catalytic functions.


Assuntos
Policetídeo Sintases/química , Biocatálise , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Policetídeo Sintases/metabolismo , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
16.
Cell Physiol Biochem ; 51(5): 2324-2340, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30537738

RESUMO

BACKGROUND/AIMS: Circular RNAs (circRNAs) are key regulators in the development and progression of human cancers, however its role in non-small cell lung cancer (NSCLC) tumorigenesis is not well understood. The aim of this study is to identify the expression level of circPVT1 in NSCLC and further investigated its functional relevance with NSCLC progression both in vitro and in vivo. METHODS: Quantative real-time PCR was used for the measurement of circPVT1 in NSCLC specimens and cell lines. Fluorescence in situ hybridization analysis (FISH) assay was used for the identification of sublocation of circPVT1 in NSCLC cells. Bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation (RIP) were performed to verify the binding of c-Fos at circPVT1 promoter region, and the direct interaction between circPVT1 and miR-125b. Gain- or loss-function assays were performed to evaluate the effects of circPVT1 on cell proliferation and invasion. Western blot and immunohistochemistry assays were performed to detect the protein levels involved in E2F2 pathway. RESULTS: We found that circPVT1 was upregulated in NSCLC specimens and cells. The transcription factor c-Fos binded to the promoter region of circPVT1, resulting in the overexpression of circPVT1 in NSCLC. Knockdown of circPVT1 suppressed NSCLC cell proliferation, migration and invasion, and increased apoptosis. In addition, circPVT1 mediated NSCLC progression via the regulation of E2F2 signaling pathway. More importantly, circPVT1 was predominantly abundant in the cytoplasm of NSCLC cells, and circPVT1 could serve as a competing endogenous RNA to regulate E2F2 expression and tumorigenesis in a miR-125b-dependent manner, which is further verified by using an in vivo xenograft model. CONCLUSION: circPVT1 promotes NSCLC cell growth and invasion, and may serve as a promising therapeutic target for NSCLC patients. Therefore, silence of circPVT1 could be a future direction to develop a novel treatment strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Fator de Transcrição E2F2/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , RNA/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Fator de Transcrição E2F2/genética , Éxons , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , RNA Circular , RNA Longo não Codificante/genética , Transdução de Sinais
17.
Inorg Chem ; 57(19): 12417-12423, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30226057

RESUMO

To comparably analyze the influence of a porous environment on the gas adsorption in MOFs, based on an imidazole-decorated MOF, {[Zn(imtp)]·DMA·1.5H2O} n (1-im, H2imtp = 2-(imidazol-1-yl) terephthalic acid), an analogue MOF, {[Zn(tztp)]·DMA} n (1-tz, H2tztp = 2-(1 H-1,2,4-triazol-1-yl) terephthalic acid) has been synthesized by replacing imidazole with triazole motifs. The two MOFs are isostructural frameworks containing 1D channels; however, they possess different porous wall environments. The open nitrogen-decorated channels in 1-tz lead to significantly enhanced C2H6 (76.5 cm3 g-1) and C2H4 (73.1 cm3 g-1) uptakes at 298 K and 1 atm, which are 5 times of the adsorption amounts of C2H6 and C2H4 in 1-im that is the absence of exposed N atoms in the channels. Furthermore, the activated 1-tz also reveals higher adsorption selectivities for C2H6 and C2H4 over CH4. The different sorption properties were further uncovered by theoretical simulations.

18.
Sensors (Basel) ; 16(3)2016 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-27007374

RESUMO

This paper presents a three-component fixed dynamometer based on a strain gauge, which reduces output errors produced by the cutting force imposed on different milling positions of the workpiece. A reformative structure of tri-layer cross beams is proposed, sensitive areas were selected, and corresponding measuring circuits were arranged to decrease the inaccuracy brought about by positional variation. To simulate the situation with a milling cutter moving on the workpiece and validate the function of reducing the output errors when the milling position changes, both static calibration and dynamic milling tests were implemented on different parts of the workpiece. Static experiment results indicate that with standard loads imposed, the maximal deviation between the measured forces and the standard inputs is 4.87%. The results of the dynamic milling test illustrate that with identical machining parameters, the differences in output variation between the developed sensor and standard dynamometer are no larger than 6.61%. Both static and dynamic experimental results demonstrate that the developed dynamometer is suitable for measuring milling force imposed on different positions of the workpiece, which shows potential applicability in machining a monitoring system.

19.
Sci Transl Med ; 16(763): eado5366, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231240

RESUMO

Blood lactate concentration is an established circulating biomarker for measuring muscle acidity and can be evaluated for monitoring endurance, training routines, or athletic performance. Sweat is an alternative biofluid that may serve similar purposes and offers the advantage of noninvasive collection and continuous monitoring. The relationship between blood lactate and dynamic sweat biochemistry for wearable engineering applications in physiological fitness remains poorly defined. Here, we developed a microfluidic wearable band with an integrated colorimetric timer and biochemical assays that temporally captures sweat and measures pH and lactate concentration. A colorimetric silver nanoplasmonic assay was used to measure the concentration of lactate, and dye-conjugated SiO2 nanoparticle-agarose composite materials supported dynamic pH analysis. We evaluated these sweat biomarkers in relation to blood lactate in human participant studies during cycling exercise of varying intensity. Iontophoresis-generated sweat pH from regions of actively working muscles decreased with increasing heart rate during exercise and was negatively correlated with blood lactate concentration. In contrast, sweat pH from nonworking muscles did not correlate with blood lactate concentration. Changes in sweat pH and blood lactate were observed in participants who did not regularly exercise but not in individuals who regularly exercised, suggesting a relationship to physical fitness and supporting further development for noninvasive, biochemical fitness evaluations.


Assuntos
Exercício Físico , Ácido Láctico , Pele , Suor , Humanos , Suor/química , Suor/metabolismo , Exercício Físico/fisiologia , Concentração de Íons de Hidrogênio , Pele/metabolismo , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Microfluídica/métodos , Masculino , Adulto , Feminino , Biomarcadores/metabolismo , Biomarcadores/sangue , Dispositivos Eletrônicos Vestíveis
20.
ACS Appl Mater Interfaces ; 15(19): 23538-23545, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37150971

RESUMO

The achievement of direct C2H4 separation from C2 hydrocarbons is very challenging in the petrochemical industry due to their similar molecular sizes, boiling points, and physicochemical properties. In this work, a nonpolar/inert ultramicroporous metal-organic framework (MOF), [Co3(µ3-OH)(tipa)(bpy)1.5]·3DMF·6H2O (1), with stand-alone one-dimensional square tubular channels was successfully constructed, its pore enriched with plenty of aromatic rings causing nonpolar/inert pore surfaces. The MOF shows preferential adsorption of C2H6 compared to C2H4 and C2H2 in the low-pressure region, which is further verified by adsorption heats and selectivities. The C2H4 separation potential in one step for binary C2H6/C2H4 (50/50 and 10/90) and ternary C2H4/C2H6/C2H2 (89/10/1) is also examined by transient breakthrough simulations. Moreover, grand canonical Monte Carlo simulations demonstrate that the unique reversed adsorption mechanism is due to the shortest and most number of C-H···π interactions between C2H6 and the framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA