Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Fish Shellfish Immunol ; 151: 109724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942251

RESUMO

Takifugu rubripes is a highly valued cultured fish in Asia, while pathogen infections can result in severe diseases and lead to substantial economic losses. Toll-like receptors (TLRs), as pattern recognition receptors, play a crucial role on recognition pathogens and initiation innate immune response. However, the immunological properties of teleost-specific TLR23 remain largely unknown. In this study, we investigated the biological functions of TLR23 (TrTLR23) from T. rubripes, found that TrTLR23 existed in various organs. Following bacterial pathogen challenge, the expression levels of TrTLR23 were significantly increased in immune related organs. TrTLR23 located on the cellular membrane and specifically recognized pathogenic microorganism. Co-immunoprecipitation and antibody blocking analysis revealed that TrTLR23 recruited myeloid differentiation primary response protein (MyD88), thereby mediating the activation of the ERK signaling pathway. Furthermore, in vivo showed that, when TrTLR23 is overexpressed in T. rubripes, bacterial replication in fish tissues is significantly inhibited. Consistently, when TrTLR23 expression in T. rubripes is knocked down, bacterial replication is significantly enhanced. In conclusion, these findings suggested that TrTLR23 played a critical role on mediation TLR23-MyD88-ERK axis against bacterial infection. This study revealed that TLR23 involved in the innate immune mechanism, and provided the foundation for development disease control strategies in teleost.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Fator 88 de Diferenciação Mieloide , Takifugu , Receptores Toll-Like , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Takifugu/imunologia , Takifugu/genética , Doenças dos Peixes/imunologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/imunologia , Imunidade Inata/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Regulação da Expressão Gênica/imunologia , Edwardsiella/fisiologia , Edwardsiella/imunologia , Vibrio/fisiologia
2.
Fish Shellfish Immunol ; 145: 109325, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154762

RESUMO

Interleukin-20 (IL-20), as an essential member of IL-10 family, plays vital roles in mammalian immunological response such as antimicrobial, inflammation, hematopoiesis, and immune diseases. In teleost, the study about immune antimicrobial function of IL-20 is largely scarce. In this article, we revealed the expression profiles and the immunological functions of the IL-20 (CsIL-20) in tongue sole Cynoglossus semilaevis. CsIL-20 is composed of 183 amino acid residues, with seven cysteine residues and a typical IL-10 domain which comprises six α-helices and two ß-sheets, and shares 34.4-71.2 % identities with other teleost IL-20. CsIL-20 was constitutively expressed in a variety of tissues and regulated by bacterial invasion, and the recombinant CsIL-20 (rCsIL-20) could bind to different bacteria. In vitro rCsIL-20 could interact with the membrane of peripheral blood leukocytes (PBLs), leading to the attenuation of reactive oxygen species (ROS) production and acid phosphatase activity in PBLs. In line with In vitro results, In vivo rCsIL-20 could obviously suppressed the host immune against bacterial infection. Furthermore, knockdown of CsIL-20 in vivo could markedly enhance the host antibacterial immunity. Collectively, these observations offer new insights into the negative effect of CsIL-20 on antibacterial immunity.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Linguados , Interleucinas , Animais , Interleucina-10 , Sequência de Aminoácidos , Proteínas de Peixes , Leucócitos/metabolismo , Bactérias/metabolismo , Antibacterianos , Peixes/metabolismo , Mamíferos/metabolismo
3.
Antonie Van Leeuwenhoek ; 117(1): 52, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478113

RESUMO

In this study, we reported a Gram-stain-negative, ovoid to rod-shaped, atrichous, and facultative anaerobe bacteria strain named YMD61T, which was isolated from the intertidal sediment of Yangma island, China. Growth of strain YMD61T occurred at 10.0-45.0 °C (optimum, 30.0 °C), pH 7.0-10.0 (optimum, 8.0) and with 0-3.0% (w/v) NaCl (optimum, 2.0%). Phylogenetic tree analysis based on 16 S rRNA gene or genomic sequence indicated that strain YMD61T belonged to the genus Fuscovulum and was closely related to Fuscovulum blasticum ATCC 33,485T (96.6% sequence similarity). Genomic analysis indicated that strain YMD61T contains a circular chromosome of 3,895,730 bp with DNA G + C content of 63.3%. The genomic functional analysis indicated that strain YMD61T is a novel sulfur-metabolizing bacteria, which is capable of fixing carbon through an autotrophic pathway by integrating the processes of photosynthesis and sulfur oxidation. The predominant respiratory quinone of YMD61T was ubiquinone-10 (Q-10). The polar lipids of YMD61T contained phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, five unidentified lipids, unidentified aminolipid and unidentified aminophospholipid. The major fatty acids of strain YMD61T contained C18:1ω7c 11-methyl and summed feature 8 (C18:1 ω 7c or/and C18:1 ω 6c). Phylogenetic, physiological, biochemical and morphological analyses suggested that strain YMD61T represents a novel species of the genus Fuscovulum, and the name Fuscovulum ytuae sp. nov. is proposed. The type strain is YMD61T (= MCCC 1K08483T = KCTC 43,537T).


Assuntos
Sedimentos Geológicos , Rhodobacteraceae , Sedimentos Geológicos/microbiologia , Fosfolipídeos/química , Filogenia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , DNA Bacteriano/genética , Ácidos Graxos/química , Rhodobacteraceae/genética , China , Enxofre , RNA Ribossômico 16S/genética
4.
Fish Shellfish Immunol ; 139: 108918, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364660

RESUMO

Interleukin 8 (IL8) is a CXC chemokine that plays a crucial role on promoting inflammatory response and immune regulation. In teleost, IL8 can induce the migration and activation of immune cells. However, the biological functions of IL8 are still unknown in Takifugu rubripes. In this study, we examined the biological characteristics of TrIL8 in T. rubripes. TrIL8 is composed of 98 residues and contained a chemokine CXC domain. We found that the TrIL8 expression was detected in diverse organs and significantly increased by Vibrio harveyi or Edwardsiella tarda challenge. The recombinant TrIL8 (rTrIL8) exhibited significantly the binding capacities to 8 tested bacteria. In addition, rTrIL8 could bind to peripheral blood leukocytes (PBL), and increased the expression of immune gene, resistance to bacterial infection, respiratory burst, acid phosphatase activity, chemotactic activity, and phagocytic activity of PBL. In the presence of rTrIL8, T. rubripes was enhanced the resistance to V. harveyi infection. These results indicated that TrIL8 is a chemokine and involved in the activation of immune cells against bacterial infection in teleost.


Assuntos
Infecções Bacterianas , Takifugu , Animais , Interleucina-8 , Sequência de Aminoácidos , Proteínas de Peixes/química , Leucócitos , Fatores Imunológicos/metabolismo , Quimiocinas/metabolismo , Antibacterianos/metabolismo
5.
Fish Shellfish Immunol ; 143: 109203, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940083

RESUMO

Calreticulin (Crt), a conserved lectin-like pleiotropic protein, plays crucial roles in mammalian immune response. In fish, the immunological function of Crt is limited investigated. Herein, we studied the antibacterial immunity of two type of Crt homologues (i.e. PoCrt-1 and PoCrt-2) in Japanese flounder (Paralichthys olivaceus). PoCrt-1 and PoCrt-2 are composed of 419 and 427 amino acid residues respectively, with 69.09% overall sequence identities with each other. Both PoCrt-1 and PoCrt-2 contain a signal peptide and three functional domains i.e. N-, P- and C-domains. Both PoCrt-1 and PoCrt-2 were constitutively expressed at various tissues with highest expression level in liver, and obviously regulated by Edwardsiella tarda and Vibrio harveyi. Furthermore, recombinant PoCrt-1 and PoCrt-2 (rPoCrt-1 and rPoCrt-2) could bind to different Gram-negative bacteria with highest binding index with E. tarda. At same time, in vitro rPoCrt-1 and rPoCrt-2 could agglutinate E. tarda, V. harveyi, and Vibrio anguillarum, and inhibit the bacterial growth. Similarly, in vivo rPoCrt-1 and rPoCrt-2 could significantly suppress the dissemination of E. tarda. Overall, these observations add new insights into the antibacterial immunity of Crt in P. olivaceus.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Vibrioses , Animais , Calreticulina , Vibrioses/veterinária , Peixes/metabolismo , Antibacterianos , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/veterinária , Proteínas de Peixes , Mamíferos/metabolismo
6.
Fish Shellfish Immunol ; 126: 131-140, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618170

RESUMO

Mammalian toll-like receptor 5 (TLR5) is crucial for recognizing bacterial flagellin and initiating the inflammatory signaling cascades via myeloid differentiation factor 88 (MyD88) signaling pathway, which plays vital roles in innate immune against pathogenic bacteria. Herein, we reported the signaling pathway and antibacterial property of tongue sole (Cynoglossus semilaevis) membrane forms of TLR5 (i.e. CsTLR5M1and CsTLR5M2). CsTLR5M1/M2 contain 936 and 885 amino acid residues respectively. CsTLR5M1 shares 86.7% overall sequence identities with CsTLR5M2. CsTLR5M1/M2 possess the same extracellular domain (ECD) and transmembrane domain (TMD), but the different toll-interleukin-1 receptor (TIR) domain. CsTLR5M1/M2 expression occurred constitutively in multiple tissues and regulated by bacterial stimulation. Recombinant CsTLR5M1/M2 (rCsTLR5M) could bind to flagellin and Gram-negative/positive bacteria, which could suppress bacterial growth. Stimulation of the CsTLR5M pathway by flagellin resulted in increased expression of MyD88-dependent signaling molecules and inflammatory cytokines. Blocking rCsTLR5M by antibody markedly reduced the phagocytosis and ROS production of peripheral blood leukocytes (PBLs), which in turn in vivo promoted the dissemination of bacteria. Overall, these observations add new insights into the signaling pathway and immune function of teleost TLR5M.


Assuntos
Doenças dos Peixes , Linguados , Linguado , Animais , Antibacterianos , Proteínas de Peixes , Flagelina/metabolismo , Flagelina/farmacologia , Linguado/metabolismo , Bactérias Gram-Negativas , Imunidade Inata/genética , Mamíferos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
7.
Fish Shellfish Immunol ; 98: 364-373, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31991231

RESUMO

Interleukin (IL)-21 is a pleiotropic cytokine and plays a vital role in immunity. In the current study, we examined the immune function of Japanese flounder Paralichthys olivaceus IL-21 (PoIL-21). PoIL-21 shares moderate (25.17%-46.25%) sequence identities with other teleost IL-21. PoIL-21 expression occurred in multiple tissues, especially intestine, and was regulated by bacterial infection in a time dependent manner. PoIL-21 was secreted by peripheral blood leukocytes (PBL) upon LPS stimulation. Recombinant PoIL-21 (rPoIL-21) bound to a wide range of Gram-negative and Gram-positive bacteria and inhibited the growth of the fish bacterial pathogen Streptococcus iniae. rPoIL-21 also interacted with PBL, resulting in enhanced cell proliferation, ROS production, and expression of IL-1ß, TNF-α, CD8ß, T-bet, PoIL-21, PoIL-21 receptor, and STAT. Consequently, the presence of rPoIL-21 significantly reduced bacterial infection in PBL. In vivo study showed that rPoIL-21 upregulated the expression of inflammatory cytokines and PoIL-21. Taken together, these results indicate that PoIL-21 is an inducible, secreted cytokine with a broad range of binding capacities and plays an important role in the regulation of anti-bacterial immunity.


Assuntos
Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Linguado/metabolismo , Regulação da Expressão Gênica/imunologia , Interleucinas/metabolismo , Animais , Edwardsiella tarda , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Linguado/imunologia , Interleucinas/genética , Proteínas Recombinantes
8.
Fish Shellfish Immunol ; 98: 860-867, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31756455

RESUMO

MicroRNAs (miRNAs) are involved in many biological activities including immune defense against pathogens. In this study, we applied high-throughput sequencing technology to examine miRNAs in Japanese flounder (Paralichthys olivaceus) infected with Streptococcus iniae at different times. A total of 1038 miRNAs were identified, of which, 249 were novel miRNAs, and 81 showed differential expression (named DEmiRNAs) after S. iniae infection. Of the 81 DEmiRNAs identified, 34 and 58 occurred at 6 h and 24 h post-infection, respectively; most DEmiRNAs were strongly time-specific, and only 13.6% of the DEmiRNAs were shared between the two time points. A total of 9582 target genes were predicted for the 81 DEmiRNAs. The putative target genes were enriched in various GO and KEGG pathways of biological processes and molecular/cellular functions, in particular endocytosis, regulation of transcription, lysososme, and the signaling pathways of MAPK, ErbB, and AMPK. One of the DEmiRNAs, pol-3p-10740_175, was found to target dual specificity phosphatase 6 (Dusp6) and repress the expression of the latter. Transfection of flounder FG cells with pol-3p-10740_175 caused a significant inhibition on S. iniae invasion. The results of this study provided the first S. iniae-induced miRNA profile in Japanese flounder and indicated that flounder miRNAs play an important role in antibacterial immunity.


Assuntos
Doenças dos Peixes/imunologia , Linguados , MicroRNAs/genética , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia , Animais , Doenças dos Peixes/virologia , MicroRNAs/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/virologia
9.
Fish Shellfish Immunol ; 95: 93-104, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31618681

RESUMO

Interleukin-10 (IL-10) is a pleiotropic cytokine and plays a crucial role in immunity. In the current study, we examined the expression patterns and biological functions of tongue sole Cynoglossus semilaevis IL-10 (CsIL-10). CsIL-10 is composed of 186 amino acid residues and shares 46.3%-71.7% identities with other teleost IL-10. Csil-10 expression occurred in multiple tissues and was regulated by bacterial infection. Recombinant CsIL-10 (rCsIL-10) in the form of a dimer bound to a wide range of bacterial species but did not affect bacterial growth. rCsIL-10 could interact with peripheral blood leukocytes (PBL) and significantly reduce the phagocytic activity, ROS production, and apoptosis of PBL. When injected in vivo, rCsIL-10 significantly suppressed the expression of proinflammatory cytokines and promoted bacterial dissemination in tongue sole tissues. Consistently, knockdown of Csil-10 significantly inhibited bacterial infection in tongue sole. Taken together, these results indicate that CsIL-10 plays a negative regulatory role in the immune response against bacterial infection.


Assuntos
Infecções Bacterianas/veterinária , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Linguados/imunologia , Imunidade Inata , Interleucina-10/imunologia , Animais , Bactérias , Infecções Bacterianas/imunologia , Doenças dos Peixes/microbiologia , Linguados/microbiologia , Fagocitose , Proteínas Recombinantes/imunologia
10.
Opt Lett ; 43(15): 3610-3613, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067636

RESUMO

We propose and experimentally demonstrate a compact and electro-optic (EO) tunable interleaver in X-cut lithium niobate thin film using an asymmetrical Mach-Zehnder interferometer configuration. Our typical fabricated device has an EO interactive length of ∼1.35 mm and a total length of ∼4.0 mm. Over a wide wavelength range from 1528 to 1605 nm, the device exhibits polarization-insensitive center wavelengths and channel spacing of ∼49.7 GHz, but a slightly different extinction ratio of 10-20 and 12-23 dB, and electrical wavelength tuning sensitivity of ∼18 and ∼16 pm/V for the transverse electric- and transverse magnetic-polarized input light, respectively. The proposed interleaver also has the potential to be used as a tunable filter or a wavelength-selective switch.

11.
Fish Shellfish Immunol ; 77: 8-12, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29551665

RESUMO

In mammals, beclin-1 is a key player that regulates autophagic activity. In fish, the immune function of beclin-1 is essentially unknown. In this study, we analyzed the involvement of tongue sole (Cynoglossus semilaevis) beclin-1 (named CsBECN1) in antibacterial immunity. CsBECN1 is composed of 451 amino acid residues and shares 84.5-95.1% overall sequence identities with other teleost beclin-1. CsBECN1 possesses a typical Bcl-2 homology domain 3 and an Atg6 domain. Expression of CsBECN1 occurred in multiple tissues and was upregulated during bacterial infection. Knockdown of CsBECN1 significantly enhanced bacterial dissemination in the tissues of tongue sole, whereas overexpression of CsBECN1 significantly reduced bacterial dissemination. Taken together, these results indicate that CsBECN1 is required for the antibacterial immunity of tongue sole.


Assuntos
Proteína Beclina-1/genética , Proteína Beclina-1/imunologia , Doenças dos Peixes/imunologia , Linguados , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Animais , Proteína Beclina-1/química , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Distribuição Aleatória , Análise de Sequência de DNA , Vibrio/fisiologia , Vibrioses
12.
Fish Shellfish Immunol ; 51: 321-328, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26947353

RESUMO

Toll-like receptor (TLR) 2 is a member of the TLR family that plays a pivotal role in innate immunity. In mammals, TLR2 is known to recognize specific microbial structures and trigger MyD88-dependent signaling to induce various cytokine responses. In this study, we examined the expression and function of the tongue sole Cynoglossus semilaevis TLR2, CsTLR2. CsTLR2 is composed of 898 amino acid residues and shares 25.6%-27.3% overall sequence identities with known teleost TLR2. CsTLR2 is a transmembrane protein with a toll/interleukin-1 receptor domain and eight leucine-rich repeats. Expression of CsTLR2 occurred in multiple tissues and was upregulated during bacterial infection. Stimulation of the CsTLR2 pathway led to enhanced expression of MyD88-dependent signaling molecules. Recombinant CsTLR2 (rCsTLR2) corresponding to the extracellular region was able to bind to a wide range of bacteria. Under both in vitro and in vivo conditions, rCsTLR2 significantly reduced bacterial infection. These observations add new insights into the signaling and function of teleost TLR2.


Assuntos
Proteínas de Peixes/imunologia , Linguados/imunologia , Receptor 2 Toll-Like/imunologia , Sequência de Aminoácidos , Animais , Carga Bacteriana , Sequência de Bases , DNA Complementar/genética , Edwardsiella tarda , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Linguados/genética , Rim/metabolismo , Lipopeptídeos/farmacologia , Fígado/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Baço/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
13.
Fish Shellfish Immunol ; 58: 641-649, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27720695

RESUMO

In this study, we examined the expression patterns and the functions of the tongue sole Cynoglossus semilaevis CD94, CsCD94. CsCD94 is composed of 209 amino acid residues and shares 43.0-50.2% overall identities with known teleost CD94 sequence. CsCD94 has a C-type lectin-like domain. Expression of CsCD94 occurred in multiple tissues and was upregulated during bacterial infection. Recombinant CsCD94 (rCsCD94) exhibited apparent binding and agglutinating activities against both Gram-positive and Gram-negative bacteria in a Ca2+-dependent manner. Treatment of bacteria with rCsCD94 enhanced phagocytosis of the bacteria by peripheral blood leukocytes. Furthermore, incubation of rCsCD94 with bacteria reduced the survival of the bacteria in vitro. Taken together, these results indicate that rCsCD94 is a key factor in the bactericidal and phagocytic effects of tongue sole, and reveal for the first time an essential role of fish CD94 in antibacterial immunity, thereby adding insight into the function of CD94.


Assuntos
Doenças dos Peixes/genética , Proteínas de Peixes/genética , Linguados , Expressão Gênica , Imunidade Inata , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Sequência de Aminoácidos , Animais , DNA Complementar/genética , DNA Complementar/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Bactérias Gram-Negativas/fisiologia , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Alinhamento de Sequência/veterinária
14.
Fish Shellfish Immunol ; 47(1): 93-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26327112

RESUMO

In mammals as well as in teleost, toll-like receptor 7 (TLR7) is known to be involved in antiviral immunity by recognizing viral RNA. However, the antibacterial potential of fish TLR7 is unclear. In this study, we analyzed the TLR7 of tongue sole (Cynoglossus semilaevis), CsTLR7, and examined its potential involvement in antibacterial immunity. CsTLR7 is composed of 1052 amino acid residues and shares 64.0%-75.9% overall sequence identities with known teleost TLR7. CsTLR7 possesses a toll/interleukin-1 receptor domain and six leucine-rich repeats. Constitutive expression of CsTLR7 occurred in relatively high levels in kidney, spleen and liver. Bacterial infection upregulated CsTLR7 expression, whereas viral infection downregulated CsTLR7 expression. Knockdown of CsTLR7 significantly enhanced bacterial dissemination in the tissues of tongue sole. Treatment of tongue sole with the imidazoquinoline compound R848 (TLR7 activator) and the endosomal acidification inhibitor chloroquine (TLR7 inhibitor) caused enhanced and reduced resistance against bacterial infection respectively. These results indicate that CsTLR7 plays an essential role in the antibacterial immunity of tongue sole.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Linguados , Infecções por Pseudomonas/veterinária , Receptor 7 Toll-Like/genética , Sequência de Aminoácidos , Animais , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/microbiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , Iridoviridae/fisiologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas fluorescens/fisiologia , Alinhamento de Sequência/veterinária , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/metabolismo
15.
Int J Biol Macromol ; 230: 123208, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634796

RESUMO

In higher vertebrates, there is only a membranal TLR5 (TLR5M), which is crucial for host defense against microbes via MyD88 signaling pathway. In teleost, both TLR5M and soluble TLR5 (TLR5S) are identified, whereas the antibacterial mechanism of TLR5S is largely unknown. In this study, we studied the immune antibacterial mechanism of Cynoglossus semilaevis TLR5S homologue (named CsTLR5S). CsTLR5S, a 71.1 kDa protein, consists of 649 amino acid residues and shares 41.7 %-57.8 % overall sequence identities with teleost TLR5S homologues. CsTLR5S contains a single extracellular domain (ECD) composed of 12 leucine-rich repeats. CsTLR5S expression was constitutively identified and upregulated by bacterial infection in tissues. In vitro recombinant CsTLR5S (rCsTLR5S) could interact with bacteria and tongue sole rTLR5M (rCsTLR5M). Furthermore, rCsTLR5S could bind to the membranal CsTLR5M of peripheral blood leukocytes (PBLs), which led to enhancing the activity and the antibacterial role of PBLs via Myd88-NF-κB pathway. In vivo rCsTLR5S could activate the Myd88-NF-κB pathway, facilitate the release of proinflammatory cytokines, and enhance the host antibacterial response against Vibrio harveyi. Moreover, the knockdown of CsTLR5M or the Myd88 inhibitor could significantly suppress the antibacterial effect of rCsTLR5S. Collectively, our findings added important insights into the TLR5S immune antibacterial property in a TLR5M-MyD88-dependent manner.


Assuntos
Doenças dos Peixes , Linguados , Animais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Leucócitos/metabolismo , Proteínas de Peixes/química
16.
J Texture Stud ; 53(4): 563-576, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580190

RESUMO

The use of egg white powder (EWP) to enhance the physicochemical properties, molecular structure, and thermal stability of Decapterus maruadsi mince gels was investigated. The thermal stability was analyzed by adding spray-dried EWP (0, 0.2, 0.4, 0.6, 0.8, and 1%) to the mince, and mince gels were prepared to study the changes in their fracture constant, water distribution, microstructure, and protein conformation of mince gels. In addition, the stress-strain curve of the EWP-mince gel was measured to obtain its compressive modulus (E). The formation of the mince gel was promoted by EWP, and the whiteness, fracture constant, water-holding capacity (WHC), and immobilized water were all enhanced. At 0.8% addition of EWP, the fracture constant increased from 176.715 ± 2.463 N/m to 348.631 ± 3.144 N/m (p < .05), which was a nearly twofold improvement. Additionally, the WHC increased from 75.21% to 79.99%, and the percentage of immobilized water increased from 94.03% to 94.91%. The EWP-mince gel network structure was the most uniform and dense, and there were increases in hydrogen bonds, disulfide bonds, ß-sheets, and ß-turns in mince gels, as well as the storage modulus (G') and enthalpy (ΔH). In contrast to the control group, the relative content of α-helixes decreased from 53.34% to 37.09% and transformed into other secondary structures, and the bulk water and cooking loss also decreased to 2.41% and 8.51%, respectively. Consequently, EWP effectively improved the quality of mince products, and the effect was most apparent when 0.8% was added.


Assuntos
Clara de Ovo , Perciformes , Animais , Clara de Ovo/química , Géis/química , Pós , Água
17.
Front Genet ; 13: 956632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186425

RESUMO

Guanylate binding protein 2 (GBP2) is a member of the guanine binding protein family, and its relationship with prognostic outcomes and tumor immune microenvironments in glioma remains elusive. We found GBP2 were increased in glioma tissues at both mRNA and protein levels. Kaplan-Meier curves revealed that high GBP2 expression was linked with worse survival of glioma patients, and multivariate Cox regression analysis indicated that high GBP2 expression was an independent prognostic factor for glioma. Combined analysis in immune database revealed that the expression of GBP2 was significantly related to the level of immune infiltration and immunomodulators. Single-cell analysis illustrated the high expression of GBP2 in malignant glioma cells showed the high antigen presentation capability, which were confirmed by real-time polymerase chain reaction (qRT-PCR) data. Additionally, the hsa-mir-26b-5p and hsa-mir-335-5p were predicted as GBP2 regulators and were validated in U87 and U251 cells. Our results first decipher immune-related characteristics and noncoding regulators of GBP2 in glioma, which may provide insights into associated immunotherapies and prognostic predictor.

18.
Dev Comp Immunol ; 115: 103885, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33045275

RESUMO

Interleukin (IL)-10, an immune-regulatory cytokine, exerts various biological functions through interaction with IL-10 receptors. In teleost, very limited functional studies on IL-10 receptors have been documented. In this study, we reported the expression patterns of IL-10 receptor 1 (CsIL-10R1) and receptor 2 (CsIL-10R2) of tongue sole (Cynoglossus semilaevis) and examined their biological properties. The expression of CsIL-10R1 and CsIL-10R2 occurred in multiple tissues and were regulated by bacterial challenge. In vitro binding studies showed that recombinant extracellular region of CsIL-10R1 (rCsIL-10R1ex) rather than rCsIL-10R2ex could bind with rCsIL-10. Cellular study showed that both CsIL-10R1 and CsIL-10R2 were expressed on peripheral blood leukocytes (PBLs), and blockade of CsIL-10R1 or CsIL-10R2 by antibody could reduce inhibitory effect of CsIL-10 on ROS production of PBLs. When injected in vivo, anti-rCsIL-10R1 or anti-rCsIL-10R2 antibody dramatically promoted the expression of proinflammatory cytokines and suppressed bacterial dissemination in tongue sole tissues. Consistently, the overexpression of CsIL-10R1 or CsIL-10R2 significantly enhanced bacterial dissemination, and the overexpression of CsIL-10R1M bearing STAT3 site mutation reduced bacterial dissemination. Overall, these results demonstrate for the first time teleost IL-10 receptors play a negative role in antibacterial immunity and add insight into the function of CsIL-10 receptors.


Assuntos
Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Linguados/imunologia , Subunidade alfa de Receptor de Interleucina-10/metabolismo , Subunidade beta de Receptor de Interleucina-10/metabolismo , Animais , Edwardsiella tarda/imunologia , Proteínas de Peixes/genética , Linguados/genética , Linguados/metabolismo , Linguados/microbiologia , Interleucina-10/metabolismo , Subunidade alfa de Receptor de Interleucina-10/genética , Subunidade alfa de Receptor de Interleucina-10/isolamento & purificação , Subunidade beta de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/isolamento & purificação , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Vibrio/imunologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-32814144

RESUMO

A previous study showed that an attenuated Edwardsiella tarda strain, TXhfq, as a live vaccine could elicit protective immune effects in fish against E. tarda infection. In the current study, in order to clarify the molecular mechanism of fish immune response at the early stage after TXhfq vaccination, RNA-Seq technology was used to compare the transcriptomes of skin, intestine, and spleen between bath-vaccinated and unvaccinated Japanese flounder (Paralichthys olivaceus). An average of 46.6 million clean reads per library was obtained, ~88.04% of which were successfully mapped to the reference genome, and approximately 24,600 genes were detected in each sample. A total of 565, 878, and 1258 differential expression genes (DEGs) were found in skin, intestine, and spleen, respectively, including 1263 up-regulated genes and 1438 down-regulated genes. The DEGs exhibited different characteristics in each tissue. One hundred and sixteen DEGs belonging to six immune related categories were scrutinized, i.e., inflammatory factors, cytokines, complement and coagulation system, mucins, phagocytosis, and antigen processing and presentation. A protein-protein interaction network was constructed to get the interaction network between immune genes during the early stage of immunization. The top six hub genes highly regulated by TXhfq formed complicated interaction relationship with each other, which were involved in immune processes, notably inflammation and phagocytosis. Our results provide valuable information for the understanding of the immune mechanism underlying the protection of live attenuated vaccines in fish.


Assuntos
Vacinas Bacterianas/administração & dosagem , Edwardsiella tarda/imunologia , Infecções por Enterobacteriaceae/prevenção & controle , Doenças dos Peixes/prevenção & controle , Linguados/imunologia , Animais , Doenças dos Peixes/microbiologia , Imunização , Mapas de Interação de Proteínas/imunologia , Transcriptoma , Vacinas Atenuadas/administração & dosagem
20.
Artigo em Inglês | MEDLINE | ID: mdl-33609809

RESUMO

MiR-150 is a microRNA (miRNA) present in a number of teleost species, but its target and regulation mechanism are unknown. Similarly, lysosome membrane protein 2-like (LMP2L) is a gene identified in fish but with unknown function. In this study, we examined the regulation mechanism and function of flounder miR-150 (named pol-miR-150) and its target gene LMP2L (named PoLMP2L) in association with bacterial and viral infection. We found that pol-miR-150 expression was not only modulated by the bacterial pathogen Streptococcus iniae but also by the viral pathogen megalocytivirus. Pol-miR-150 targeted PoLMP2L by binding to the 3'-untranslated region (3'-UTR) of PoLMP2L and inhibited PoLMP2L expression in vitro and in vivo. PoLMP2L is a member of the CD36 superfamily of scavenger receptors and homologous to but phylogenetically distinct from lysosomal integral membrane protein type 2 (LIMP2). PoLMP2L was localized mainly in the lysosomes and expressed in multiple organs of flounder. In vivo knockdown and overexpression of PoLMP2L enhanced and suppressed, respectively, S. iniae dissemination in flounder tissues, whereas in vivo knockdown and overexpression of pol-miR-150 produced the opposite effects on S. iniae dissemination. In addition, pol-miR-150 knockdown also significantly inhibited the replication of megalocytivirus. The results of this study revealed the regulation mechanism and immune functions of fish miR-150 and LMP2L, and indicated that LMP2L and miR-150 play an important role in the antimicrobial immunity of fish.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes/imunologia , Linguado , Iridoviridae/imunologia , Lisossomos , MicroRNAs/imunologia , Infecções Estreptocócicas , Streptococcus iniae/imunologia , Animais , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/microbiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Linguado/imunologia , Linguado/microbiologia , Linguado/virologia , Lisossomos/imunologia , Lisossomos/microbiologia , Lisossomos/virologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA