Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Stroke ; 54(1): 44-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542075

RESUMO

Memory impairment occurs in over a third of patients after symptomatic stroke. Memory deficits rarely occur in isolation but are an important component of the poststroke cognitive syndrome because of the strong relationship with the risk of poststroke dementia. In this review, we summarize available data on impairment of episodic memory, with a particular emphasis on the natural history of memory impairment after stroke and the factors influencing trajectory informed by an updated systematic review. We next discuss the pathophysiology of memory impairment and mechanisms of both decline and recovery of function. We then turn to the practical issue of measurement of memory deficits after stroke, emerging biomarkers, and therapeutic approaches. Our review identifies critical gaps, particularly in studies of the natural history that properly map the long-term trajectory of memory and the associations with factors that modulate prognosis. Few studies have used advanced neuroimaging and this, in conjunction with other biomarker approaches, has the potential to provide a much richer understanding of the mechanisms at play and promising therapeutic avenues.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Acidente Vascular Cerebral , Humanos , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/psicologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Prognóstico , Biomarcadores , Transtornos da Memória , Cognição , Testes Neuropsicológicos , Disfunção Cognitiva/complicações
2.
Neuroimage ; 272: 120069, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003445

RESUMO

Visual working memory is critical for goal-directed behavior as it maintains continuity between previous and current visual input. Functional neuroimaging studies have shown that visual working memory relies on communication between distributed brain regions, which implies an important role for long-range white matter connections in visual working memory performance. Here, we characterized the relationship between the microstructure of white matter association tracts and the precision of visual working memory representations. To that purpose, we devised a delayed estimation task which required participants to reproduce visual features along a continuous scale. A sample of 80 healthy adults performed the task and underwent diffusion-weighted MRI. We applied mixture distribution modelling to quantify the precision of working memory representations, swap errors, and guess rates, all of which contribute to observed responses. Latent components of microstructural properties in sets of anatomical tracts were identified by principal component analysis. We found an interdependency between fibre coherence in the bilateral superior longitudinal fasciculus (SLF) I, SLF II, and SLF III, on one hand, and the bilateral inferior fronto-occipital fasciculus (IFOF), on the other, in mediating the precision of visual working memory in a functionally specific manner. We also found that individual differences in axonal density in a network comprising the bilateral inferior longitudinal fasciculus (ILF) and SLF III and right SLF II, in combination with a supporting network located elsewhere in the brain, form a common system for visual working memory to modulate response precision, swap errors, and random guess rates.


Assuntos
Memória de Curto Prazo , Substância Branca , Adulto , Humanos , Memória de Curto Prazo/fisiologia , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Mapeamento Encefálico/métodos
3.
Neuroimage ; 255: 119204, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427771

RESUMO

Visual working memory refers to the temporary maintenance and manipulation of task-related visual information. Recent debate on the underlying neural substrates of visual working memory has focused on the delay period of relevant tasks. Persistent neural activity throughout the delay period has been recognized as a correlate of working memory, yet regions demonstrating sustained hemodynamic responses show inconsistency across individual studies. To develop a more precise understanding of delay-period activations during visual working memory, we conducted a coordinate-based meta-analysis on 30 fMRI experiments involving 515 healthy adults with a mean age of 25.65 years. The main analysis revealed a widespread frontoparietal network associated with delay-period activity, as well as activation in the right inferior temporal cortex. These findings were replicated using different meta-analytical algorithms and were shown to be robust against between-study heterogeneity and publication bias. Further meta-analyses on different subgroups of experiments with specific task demands and stimulus types revealed similar delay-period networks, with activations distributed across the frontal and parietal cortices. The roles of prefrontal regions, posterior parietal regions, and inferior temporal areas are reviewed and discussed in the context of content-specific storage. We conclude that cognitive operations that occur during the unfilled delay period in visual working memory tasks can be flexibly expressed across a frontoparietal-temporal network depending on experimental parameters.


Assuntos
Imageamento por Ressonância Magnética , Memória de Curto Prazo , Adulto , Mapeamento Encefálico , Humanos , Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia
4.
Mol Pharm ; 16(3): 1140-1155, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30668131

RESUMO

Chronic inflammation is closely related to the development, deterioration, and metastasis of tumors. Recently, many studies have shown that down-regulating the expression of inflammation by blocking nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways could significantly inhibit tumor growth and metastasis. The combined application of curcumin (CUR) and celecoxib (CXB) has been proven to exert a synergistic antitumor effect via inhibiting the activation of NF-κB and STAT3. TAT-NBD (TN) peptide, a fusion peptide of NF-κB essential modulator (NEMO)-binding domain peptide (NBD) and cell-penetrating peptide (TAT), can selectively block NF-κB activating pathway resulting in tumor growth inhibition. In the present study, a novel TN-modified liposome coloading both CXB and CUR (TN-CCLP) at a synergistic ratio was first constructed with the property of synchronous release, then hyaluronic acid (HA) as CD44 targeting moiety was coated on the surface of the cationic liposome via electrostatic interaction to prepare the anionic HA/TN-CCLP. In vitro results of cytotoxicity, macrophage migration inhibition, and anti-inflammation efficacy revealed that TN-CCLP and HA/TN-CCLP were significantly superior to TN-LP and CCLP, while TN-CCLP exhibited better effects than HA/TN-CCLP due to higher cellular uptake ability. Different from in vitro data, after systematically treating 4T1 breast tumor-bearing mice, HA/TN-CCLP exerted the most striking effects on anti-inflammation, inhibition of macrophage recruitment, and antitumor because of the longest circulation time and maximum tumor accumulation. In particular, HA/TN-CCLP could availably block the lung metastasis of breast cancer. Taken together, the novel CD44 targeted TN-CCLP exhibited the potential for inhibiting tumor development and metastasis through improving inflammatory infiltration of tumor tissue.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/uso terapêutico , Quimioterapia Combinada/métodos , Ácido Hialurônico/química , Neoplasias Inflamatórias Mamárias/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Apoptose/efeitos dos fármacos , Celecoxib/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Curcumina/uso terapêutico , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Feminino , Xenoenxertos , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Inflamatórias Mamárias/patologia , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Resultado do Tratamento , Carga Tumoral
5.
Psychophysiology ; 60(11): e14368, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37326452

RESUMO

Previous studies have provided mixed findings regarding the nonconscious processing of fearful faces. Here, we used multivariate pattern analysis on electroencephalography data from three backward masking experiments to examine the processing of fearful faces under different visual awareness conditions. Three groups of participants were shown pairs of face images presented very briefly (for 16 ms) or for sufficiently long (for 266 ms), and completed tasks where the faces were either relevant to the experimental task (Experiment 1) or not (Experiments 2 and 3). Three main decoding analyses were performed. First, in the visual awareness decoding, the visibility of the faces, and hence participants' awareness of them, was maximally decodable in three time windows: 158-168 ms, 235-260 ms and 400-600 ms where the earlier neural patterns were generalized to the later stage activity. Second, we found that the spatial location of a fearful face in the face pairs was decodable, however only when the faces were consciously seen and task-relevant. Finally, we successfully decoded distinct neural patterns associated with the fearful-face-present conditions, compared to the fearful-face-absent conditions, and these patterns were decodable during both short and long presentations of the faces. Together, our results suggest that, while the processing of the spatial location of fearful faces requires awareness and task-relevancy, the mere presence of fearful faces can be processed even when visual awareness is highly restricted.

6.
Brain Imaging Behav ; 15(2): 1134-1154, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32710330

RESUMO

BACKGROUND: Abnormal neural activities during emotional processing have been found in both adults and youths with major depressive disorder. However, findings were inconsistent in each group and cannot be compared to each other. METHODS: We first identified neuroimaging experiments that revealed abnormal neural activities during emotional processing in patients with major depressive disorder published from January 1997 to January 2019. Then we conducted voxel-wise meta-analyses on adult and youth patients separately and compared the two age groups using direct meta-comparison. RESULTS: Fifty-four studies comprising 1141 patients and 1242 healthy controls were identified. Both adult and youth patients showed abnormal neural activities in anterior cingulate cortex, insula, superior and middle temporal gyrus, and occipital cortex compared to healthy controls. However, hyperactivities in the superior and middle frontal gyrus, amygdala, and hippocampus were only observed in adult patients, while hyperactivity in the striatum was only found in youth patients compared to controls. In addition, compared with youths, adult patients exhibited significantly greater abnormal activities in insula, middle frontal gyrus, and hippocampus, and significantly lower abnormal activities in middle temporal gyrus, middle occipital gyrus, lingual gyrus, and striatum. CONCLUSIONS: The common alterations confirmed the negative processing bias in major depressive disorder. Both adult and youth patients were suggested to have disturbed emotional perception, appraisal, and reactivity. However, adult patients might be more subject to the impaired appraisal and reactivity processes, while youth patients were more subject to the impaired perception process. These findings help us understand the progressive pathophysiology of major depressive disorder.


Assuntos
Transtorno Depressivo Maior , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Emoções , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética
7.
Acta Biomater ; 106: 301-313, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32081779

RESUMO

Corosolic acid (CA), a natural pentacyclic triterpenoid, exhibits antitumor and synergistic therapy effect with chemotherapeutic drugs mainly through inhibiting STAT3 activation. In this study, it is found that CA possesses cholesterol-like properties in liposome by regulating membrane phase behavior to form stable cholesterol-free CA liposomes (CALP). Compared with traditional cholesterol liposomes (CHOLP), CALP exhibit stronger membrane fusion and higher cellular uptake, and other functions including inhibition of STAT3 activation and suppression of the recruitment of macrophages to tumor microenvironment. Therefore, CALP is used as a functional carrier, and doxorubicin-loaded CALP (DOX/CALP) based on PEGylated liposomal doxorubicin (DOXILⓇ) are prepared by replacing its cholesterol with CA. The physicochemical properties and biological activities are compared with those of doxorubicin-loaded cholesterol liposomes (DOX/LP). Both DOX/CALP and DOX/LP possess approximately similar physical properties and exhibit high stability and low drug leakage as shown by the published data of DOXILⓇ. Nevertheless, it is noteworthy that DOX/CALP displays higher in vitro cellular uptake and tumor spheroid permeation along with stronger cytotoxicity against tumor cells than DOX/LP. Despite DOX/CALP has the same PK parameters, normal tissue biodistribution, and safety profile as DOX/LP, the results of an in vivo study in 4T1-bearing mice indicate that the DOX/CALP treatment group exhibit higher tumor accumulation, more significant tumor growth inhibition, and longer life span than the DOX/LP group. Overall, DOX/CALP is a representative example of CA-doped liposomes, suggesting that CALP as a functional drug carrier for solving low efficacy of present liposomal drugs might have promising application potential. STATEMENT OF SIGNIFICANCE: An original drug delivery nanocarrier, corosolic acid liposome (CALP), was developed in this study. It was found that CA possesses cholesterol-like function to regulate phospholipid membrane phase behavior. By replacing the cholesterol with CA, the liposomes were converted into high cellular uptake carriers, possessing anti-inflammatory activity and synergism with chemotherapeutic drugs. The variability of CALP formulations enabled to deliver therapeutic agents. The use of CALP to deliver doxorubicin not only significantly enhanced the therapeutic efficacy compared with the classic PEGylated liposomal doxorubicin, but also maintained the improved safety. Because CALP can be obtained by conventional liposome preparation methods, its use as functional drug carriers for solving low efficacy of present liposomal drugs would have promising application potential.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Lipossomos/química , Triterpenos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Feminino , Camundongos , Células RAW 264.7 , Ratos Sprague-Dawley , Triterpenos/química , Triterpenos/farmacocinética
8.
J Drug Target ; 25(3): 235-246, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27646474

RESUMO

iRGD (internalizing RGD) with high affinity to αν integrins was reported to enhance tumor penetrability by binding to neuropilin-1 (NRP-1). Based on our previous study, chitosan surface-modified poly (lactide-co-glycolides) nanoparticles (PLGA/CS NPs), loaded with carmustine (BCNU) and its sensitizer (O6-benzylguanine, BG) showed stronger anti-tumor effect than free drugs. In present study, PLGA/CS NPs (NPs) with core-shell structure were prepared and modified with iRGD or mPEG. F98, C6 or U87 cell lines with different receptors levels were selected for in vitro and in vivo studies. After administration of iRGD-mediated NPs, including iRGD-modified NPs (iRGD-NPs) and co-administration of iRGD and NPs (iRGD + NPs), their effects on glioma were compared with NPs. iRGD-NPs showed stronger cytotoxicity and cellular uptake than other groups. iRGD-NPs and iRGD + NPs displayed deeper tumor penetration and stronger anti-invasion effect on three dimensional (3D) glioma spheroids than NPs. On F98 glioma-bearing mice model, iRGD-mediated NPs showed enhanced crossing BBB ability and brain tumor accumulation levels. Correspondingly, the median survival time of iRGD + NPs, iRGD-NPs and NPs groups were 58, 49 and 34.5 days, respectively. Present studies supported the iRGD-mediated strategy to improve the efficacy of antitumor drug delivery system. Importantly, co-administration of iRGD may be a greater way over the conjugation of iRGD.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Carmustina/administração & dosagem , Modelos Animais de Doenças , Portadores de Fármacos , Glioma/tratamento farmacológico , Guanina/análogos & derivados , Nanopartículas/química , Oligopeptídeos/química , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/patologia , Guanina/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Microambiente Tumoral
9.
Drug Deliv ; 24(1): 1372-1383, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28920712

RESUMO

Mesenchymal stem cells (MSCs), exhibiting tumor-tropic and migratory potential, can serve as cellular carriers to improve the effectiveness of anticancer agents. However, several challenges, such as the safety issue, the limited drug loading, the conservation of stemness and migration of MSCs, still remain in the MSC-based delivery system. In the present study, a novel nano-engineered MSC delivery system was established by loading doxorubicin (DOX)-polymer conjugates for the systemic treatment of pulmonary metastasis of breast cancer. For the first time, a dual drug-loaded mode, endocytosis and membrane-bound, was adopted to achieve the maximum amount of DOX conjugates in MSCs. The in vitro studies revealed the loaded MSCs possessed multifunctional properties, including preservation of the stemness and migration of MSCs, excellent stability of drug loading, acid sensitive drug release and obvious cytotoxicity against 4T1 cells. The in vivo studies confirmed that the loaded MSCs mainly located and long stayed in the lung where the foci of metastatic tumor situated. Importantly, loaded MSCs can significantly inhibit the tumor growth and prolong the life span of tumor-bearing mice in contrast with DOX and DOX-conjugate. The present loaded MSCs system suggested a promising strategy to solve several issues existed in cell-based delivery systems. Especially for the problem of low drug loading, the strategy, simultaneously loading nanodrug in cells' internal and membrane, might be the most desirable method so far and could be developed as a generalizable manner for cell-mediated tumor-targeted therapy.


Assuntos
Neoplasias Pulmonares , Células-Tronco Mesenquimais , Animais , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA