Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Nature ; 625(7993): 60-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172363

RESUMO

Semiconducting graphene plays an important part in graphene nanoelectronics because of the lack of an intrinsic bandgap in graphene1. In the past two decades, attempts to modify the bandgap either by quantum confinement or by chemical functionalization failed to produce viable semiconducting graphene. Here we demonstrate that semiconducting epigraphene (SEG) on single-crystal silicon carbide substrates has a band gap of 0.6 eV and room temperature mobilities exceeding 5,000 cm2 V-1 s-1, which is 10 times larger than that of silicon and 20 times larger than that of the other two-dimensional semiconductors. It is well known that when silicon evaporates from silicon carbide crystal surfaces, the carbon-rich surface crystallizes to produce graphene multilayers2. The first graphitic layer to form on the silicon-terminated face of SiC is an insulating epigraphene layer that is partially covalently bonded to the SiC surface3. Spectroscopic measurements of this buffer layer4 demonstrated semiconducting signatures4, but the mobilities of this layer were limited because of disorder5. Here we demonstrate a quasi-equilibrium annealing method that produces SEG (that is, a well-ordered buffer layer) on macroscopic atomically flat terraces. The SEG lattice is aligned with the SiC substrate. It is chemically, mechanically and thermally robust and can be patterned and seamlessly connected to semimetallic epigraphene using conventional semiconductor fabrication techniques. These essential properties make SEG suitable for nanoelectronics.

2.
Mol Cell ; 81(13): 2736-2751.e8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932349

RESUMO

Cholesterol metabolism is tightly associated with colorectal cancer (CRC). Nevertheless, the clinical benefit of statins, the inhibitor of cholesterol biogenesis mevalonate (MVA) pathway, is inconclusive, possibly because of a lack of patient stratification criteria. Here, we describe that YAP-mediated zinc finger MYND-type containing 8 (ZMYND8) expression sensitizes intestinal tumors to the inhibition of the MVA pathway. We show that the oncogenic activity of YAP relies largely on ZMYND8 to enhance intracellular de novo cholesterol biogenesis. Disruption of the ZMYND8-dependent MVA pathway greatly restricts the self-renewal capacity of Lgr5+ intestinal stem cells (ISCs) and intestinal tumorigenesis. Mechanistically, ZMYND8 and SREBP2 drive the enhancer-promoter interaction to facilitate the recruitment of Mediator complex, thus upregulating MVA pathway genes. Together, our results establish that the epigenetic reader ZMYND8 endows YAP-high intestinal cancer with metabolic vulnerability.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais/metabolismo , Ácido Mevalônico/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Camundongos , Camundongos Transgênicos , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
3.
PLoS Biol ; 21(9): e3002309, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37713449

RESUMO

The proton-activated chloride (PAC) channel plays critical roles in ischemic neuron death, but its activation mechanisms remain elusive. Here, we investigated the gating of PAC channels using its novel bifunctional modulator C77304. C77304 acted as a weak activator of the PAC channel, causing moderate activation by acting on its proton gating. However, at higher concentrations, C77304 acted as a weak inhibitor, suppressing channel activity. This dual function was achieved by interacting with 2 modulatory sites of the channel, each with different affinities and dependencies on the channel's state. Moreover, we discovered a protonation-independent voltage activation of the PAC channel that appears to operate through an ion-flux gating mechanism. Through scanning-mutagenesis and molecular dynamics simulation, we confirmed that E181, E257, and E261 in the human PAC channel serve as primary proton sensors, as their alanine mutations eliminated the channel's proton gating while sparing the voltage-dependent gating. This proton-sensing mechanism was conserved among orthologous PAC channels from different species. Collectively, our data unveils the polymodal gating and proton-sensing mechanisms in the PAC channel that may inspire potential drug development.

4.
Funct Integr Genomics ; 24(3): 109, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797780

RESUMO

For the study of species evolution, chloroplast gene expression, and transformation, the chloroplast genome is an invaluable resource. Codon usage bias (CUB) analysis is a tool that is utilized to improve gene expression and investigate evolutionary connections in genetic transformation. In this study, we analysed chloroplast genome differences, codon usage patterns and the sources of variation on CUB in 14 Annonaceae species using bioinformatics tools. The study showed that there was a significant variation in both gene sizes and numbers between the 14 species, but conservation was still maintained. It's worth noting that there were noticeable differences in the IR/SC sector boundary and the types of SSRs among the 14 species. The mono-nucleotide repeat type was the most common, with A/T repeats being more prevalent than G/C repeats. Among the different types of repeats, forward and palindromic repeats were the most abundant, followed by reverse repeats, and complement repeats were relatively rare. Codon composition analysis revealed that all 14 species had a frequency of GC lower than 50%. Additionally, it was observed that the proteins in-coding sequences of chloroplast genes tend to end with A/T at the third codon position. Among these species, 21 codons exhibited bias (RSCU > 1), and there were 8 high-frequency (HF) codons and 5 optimal codons that were identical across the species. According to the ENC-plot and Neutrality plot analysis, natural selection had less impact on the CUB of A. muricate and A. reticulata. Based on the PR2-plot, it was evident that base G had a higher frequency than C, and T had a higher frequency A. The correspondence analysis (COA) revealed that codon usage patterns different in Annonaceae.


Assuntos
Annonaceae , Uso do Códon , Genoma de Cloroplastos , Annonaceae/genética , Códon/genética , Evolução Molecular , Repetições de Microssatélites , Composição de Bases , Filogenia
5.
Biochem Biophys Res Commun ; 704: 149690, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38387326

RESUMO

Alcohol-related liver disease (ALD) is a global healthcare concern which caused by excessive alcohol consumption with limited treatment options. The pathogenesis of ALD is complex and involves in hepatocyte damage, hepatic inflammation, increased gut permeability and microbiome dysbiosis. FOXO3 is a well-recognized transcription factor which associated with longevity via promoting antioxidant stress response, preventing senescence and cell death, and inhibiting inflammation. We and many others have reported that FOXO3-/- mice develop more severe liver injury in response to alcohol. In the present study, we aimed to develop compounds that activate FOXO3 and further investigate their effects in alcohol induced liver injury. Through virtual screening, we discovered series of small molecular compounds that showed high affinity to FOXO3. We confirmed effects of compounds on FOXO3 target gene expression, as well as antioxidant and anti-apoptotic effects in vitro. Subsequently we evaluated the protective efficacy of compounds in alcohol induced liver injury in vivo. As a result, the leading compound we identified, 214991, activated downstream target genes expression of FOXO3, inhibited intracellular ROS accumulation and cell apoptosis induced by H2O2 and sorafenib. By using Lieber-DeCarli alcohol feeding mouse model, 214991 showed protective effects against alcohol-induced liver inflammation, macrophage and neutrophil infiltration, and steatosis. These findings not only reinforce the potential of FOXO3 as a valuable target for therapeutic intervention of ALD, but also suggested that compound 214991 as a promising candidate for the development of innovative therapeutic strategies of ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Proteína Forkhead Box O3 , Hepatopatias Alcoólicas , Animais , Camundongos , Antioxidantes/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Etanol/toxicidade , Etanol/metabolismo , Peróxido de Hidrogênio/farmacologia , Inflamação/patologia , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Camundongos Endogâmicos C57BL , Proteína Forkhead Box O3/agonistas
6.
Small ; : e2312104, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441363

RESUMO

Owing to the improved charge separation and maximized redox capability of the system, Step-scheme (S-scheme) heterojunctions have garnered significant research attention for efficient photocatalysis of H2 evolution. In this work, an innovative linear donor-acceptor (D-A) conjugated polymer fluorene-alt-(benzo-thiophene-dione) (PFBTD) is coupled with the CdS nanosheets, forming the organic-inorganic S-scheme heterojunction. The CdS/PFBTD (CP) composite exhibits an impressed hydrogen production rate of 7.62 mmol g-1  h-1 without any co-catalysts, which is ≈14 times higher than pristine CdS. It is revealed that the outstanding photocatalytic performance is attributed to the formation of rapid electron transfer channels through the interfacial Cd─O bonding as evidenced by the density functional theory (DFT) calculations and in situ X-ray photoelectron spectroscopy (XPS) analysis. The charge transfer mechanism involved in S-scheme heterojunctions is further investigated through the photo-irradiated Kelvin probe force microscopy (KPFM) analysis. This work provides a new point of view on the mechanism of interfacial charge transfer and points out the direction of designing superior organic-inorganic S-scheme heterojunction photocatalysts.

7.
J Transl Med ; 22(1): 249, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454407

RESUMO

BACKGROUND: Bioactive lipids involved in the progression of various diseases. Nevertheless, there is still a lack of biomarkers and relative regulatory targets. The lipidomic analysis of the samples from platinum-resistant in gastric cancer patients is expected to help us further improve our understanding of it. METHODS: We employed LC-MS based untargeted lipidomic analysis to search for potential candidate biomarkers for platinum resistance in GC patients. Partial least squares discriminant analysis (PLS-DA) and variable importance in projection (VIP) analysis were used to identify differential lipids. The possible molecular mechanisms and targets were obtained by metabolite set enrichment analysis and potential gene network screened. Finally, verified them by immunohistochemical of a tissue microarray. RESULTS: There were 71 differential lipid metabolites identified in GC samples between the chemotherapy-sensitivity group and the chemotherapy resistance group. According to Foldchange (FC) value, VIP value, P values (FC > 2, VIP > 1.5, p < 0.05), a total of 15 potential biomarkers were obtained, including MGDG(43:11)-H, Cer(d18:1/24:0) + HCOO, PI(18:0/18:1)-H, PE(16:1/18:1)-H, PE(36:2) + H, PE(34:2p)-H, Cer(d18:1 + hO/24:0) + HCOO, Cer(d18:1/23:0) + HCOO, PC(34:2e) + H, SM(d34:0) + H, LPC(18:2) + HCOO, PI(18:1/22:5)-H, PG(18:1/18:1)-H, Cer(d18:1/24:0) + H and PC(35:2) + H. Furthermore, we obtained five potential key targets (PLA2G4A, PLA2G3, DGKA, ACHE, and CHKA), and a metabolite-reaction-enzyme-gene interaction network was built to reveal the biological process of how they could disorder the endogenous lipid profile of platinum resistance in GC patients through the glycerophospholipid metabolism pathway. Finally, we further identified PLA2G4A and ACHE as core targets of the process by correlation analysis and tissue microarray immunohistochemical verification. CONCLUSION: PLA2G4A and ACHE regulated endogenous lipid profile in the platinum resistance in GC patients through the glycerophospholipid metabolism pathway. The screening of lipid biomarkers will facilitate earlier precision medicine interventions for chemotherapy-resistant gastric cancer. The development of therapies targeting PLA2G4A and ACHE could enhance platinum chemotherapy effectiveness.


Assuntos
Neoplasias Gástricas , Humanos , Biomarcadores , Análise Discriminante , Glicerofosfolipídeos , Fosfolipases A2 do Grupo III , Fosfolipases A2 do Grupo IV , Metabolismo dos Lipídeos/genética , Lipídeos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
8.
J Exp Bot ; 75(11): 3300-3321, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38447063

RESUMO

In a gene chip analysis, rice (Oryza sativa) OsSMP2 gene expression was induced under various abiotic stresses, prompting an investigation into its role in drought resistance and abscisic acid signaling. Subsequent experiments, including qRT-PCR and ß-glucuronidase activity detection, affirmed the OsSMP2 gene's predominant induction by drought stress. Subcellular localization experiments indicated the OsSMP2 protein primarily localizes to the cell membrane system. Overexpressing OsSMP2 increased sensitivity to exogenous abscisic acid, reducing drought resistance and leading to reactive oxygen species accumulation under drought stress. Conversely, in simulated drought experiments, OsSMP2-silenced transgenic plants showed significantly longer roots compared with the wild-type Nipponbare. These results suggest that OsSMP2 overexpression negatively affects rice drought resistance, offering valuable insights into molecular mechanisms, and highlight OsSMP2 as a potential target for enhancing crop resilience to drought stress.


Assuntos
Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Estresse Fisiológico , Oryza/genética , Oryza/fisiologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
9.
Anal Bioanal Chem ; 416(4): 883-893, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052994

RESUMO

The developed method for simultaneous detection of aflatoxin B1 (AFB1) and aflD genes can effectively monitor from the source and reduce the safety problems and economic losses caused by the production of aflatoxin, which can be of great significance for food safety regulations. In this paper, we constructed a sensitive and convenient fluorescent biosensor to detect AFB1 and aflD genes simultaneously based on fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and a black hole quenching agent. A stable "Y" shaped aptasensor was employed as the detection platform and a double quantum dot labeled DNA fragment was utilized to be the sensing element in this work. When the targets of AFB1 and aflD genes were presented in the solution, the aptamer in the "Y" shaped probe is specifically recognized by the target. At this time, both Si-carbon quantum dots (Si-CDs) and CdTe QDs are far away from the BHQ1 and BHQ3 to recover the fluorescence. The linear range of the prepared fluorescence simultaneous detection method was as wide as 0.5-500 ng·mL-1 with detection lines of 0.64 ng·mL-1 for AFB1 and 0.5-500 nM with detection lines of 0.75 nM for aflD genes (3σ/k). This fabricated fluorescent biosensor was further validated in real rice flour and corn flour samples, which also achieved good results. The recoveries were calculated by comparing the known and found amounts of AFB1 which ranged from 88.4 to approximately 115.32% in the rice flour samples and 90.7 ~ 102.58% in the corn flour samples. The recoveries of aflD genes ranged from 84.32 to approximately 109.3% in the rice flour samples and 89.48 ~ 100.99% in the corn flour samples. Therefore, the proposed biosensor can significantly improve food safety and quality control through a simple, fast, and sensitive agricultural product monitoring and detection system.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Compostos de Cádmio , Pontos Quânticos , Aflatoxina B1/análise , Aptâmeros de Nucleotídeos/genética , Telúrio , Corantes Fluorescentes , Técnicas Biossensoriais/métodos , Limite de Detecção
10.
Phys Chem Chem Phys ; 26(8): 6524-6531, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38329237

RESUMO

This work presents mechanisms to rationalize the nature of ultrafast photochemical and photophysical processes on the first singlet metal-ligand charge transfer state (1MLCT1) of the [Ru(bpy)3]2+ complex. The 1MLCT1 state is the lowest-lying singlet excited state and the most important intermediate in the early evolution of photoexcited [Ru(bpy)3]2+*. The results obtained from simple but interpretable theoretical models show that the 1MLCT1 state can be very quickly formed via both direct photo-excitation and internal conversions and then can efficiently relax to its equilibrium geometry in ca. 5 fs. The interligand electron transfer (ILET) on the potential energy surface of the 1MLCT1 state is also extremely fast, with a rate constant of ca. 1.38 × 1013 s-1. The ultrafast ILET implies that the excited electron can dynamically delocalize over the three bpy ligands, despite the fact that the excited electron may be localized on either one of the three ligands at the equilibrium geometries of the three symmetric equivalent minima. Since rapid ILET essentially suggests delocalization, the long-standing controversy in inorganic photophysics-whether the excited electron is localized or delocalized-may therefore be calmed down to some extent.

11.
Eur J Pediatr ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990385

RESUMO

While Kawasaki disease (KD) induced coronary artery aneurysms (KD CAAs) in children are well studied, the features and prognosis of non-KD induced CAAs (non-KD CAAs) in the pediatric population are poorly documented. This case series study is to analyze the etiology and prognosis of non-KD CAAs in children and compare the characteristics of non-KD CAAs and KD CAAs. Non-KD CAA and KD CAA cases at our department from January 2022 to December 2023 were retrospectively collected. Etiologies and prognosis of non-KD CAAs were analyzed. Furthermore, demographic data, biochemical parameters and outcomes between children with Non-KD CAAs and children with KD CAAs were comparatively studied. Fifteen children with non-KD CAAs with a median age of 6 years and 117 children with KD CAAs with a median age of 2.0 years (p = 0.022) were included in this study. The causes of non-KD CAAs include: unknown etiologies (2 cases), coronary artery structural abnormalities (4), Takayasu arteritis (2), virus infection (2), cardiomyopathy (2), aplastic anemia with agranulocytosis (1), ANCA-associated vasculitis (1), and mucopolysaccharidosis (1). In the non-KD CAA group, there were a total of 19 CAAs with 3 being giant, 5 medium, and 11 small; 4 patients had complete CAA regression; an infant with a fistula between the right coronary artery and the coronary sinus complicated with cardiac enlargement died of heart failure. The KD group had significantly higher levels of CRP, white cells counts and ESR with zero mortality. Non-KD CAA cases had a significantly lower regression rate than KD-CAA cases (26.7% vs 66.7%, p = 0.004), and the probability of CAA regression in non-KD patients was 0.341 of that in KD patients (p = 0.006, OR = 0.341, 95% CI: 0.179-0.647). CONCLUSIONS: Various etiologies for Non-KD CAAs are identified. Patients with Non-KD CAAs were observed to have lower inflammatory indexes but poorer recovery than patients with KD CAAs. Therapeutic strategies different than those for KD may be needed for non-KD CAAs. WHAT IS KNOWN: • Coronary artery aneurysm (CAA) in children is most commonly induced by Kawasaki disease (KD CAA), with a 50 ~ 70% regression rate in 1 to 2 years. • CAA induced by diseases other than KD (non-KD CAA) in children is rare and its prognosis remains largely unknown. WHAT IS NEW: • Most non-KD CAA cases are caused by coronary artery structural malformations. • Non-KD CAA in children has poorer prognosis and lower regression rate compared with KD CAA. • In addition to guideline directed anti-platelet and anti-coagulant therapies, treatments targeting the causal factor are necessary for non-KD CAA.

12.
Nutr J ; 23(1): 59, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834985

RESUMO

BACKGROUND: Given the benefits of gardening for physical and psychological health, we explored whether gardening was associated with lower risks of subjective cognitive decline (SCD), a precursor of dementia, and SCD-related functional limitations. METHODS: Included in this cross-sectional study were 136,748 participants aged 45 + years old from the Behavioral Risk Factor Surveillance System 2019 survey, who were then categorized into three groups according to self-reported exercise status: non-exercisers, gardeners, and other exercisers. SCD was assessed via a questionnaire, and SCD-related functional limitations were referred to as having difficulties in engaging in household or social activities due to SCD. The odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the associations of gardening with SCD and SCD-related functional limitations, adjusted for age, sex, socioeconomic status, lifestyle factors, and health status. Mediation analyses were conducted to examine whether the observed association between gardening and SCD was mediated by energy expenditure (MET-hours/week), depression status, and consumption of fruits and vegetables. RESULTS: Overall, 11.1% and 5.4% of participants self-reported experiencing SCD and SCD-related functional limitations, respectively. The adjusted OR for gardeners vs. non-exercisers, was 0.72 (95% CI 0.62-0.83) for SCD and 0.57 (95% CI 0.44-0.73) for SCD-related functional limitations. The observed association between gardening and SCD was explained by higher energy expenditure (39.0%), lower likelihood of having depression (21.5%), and higher consumption of fruits and vegetables (3.4%) (P<0.05 for all). Similar patterns were observed for SCD-related functional limitations. CONCLUSION: In this nationally representative sample, gardening was associated with better cognitive status, which may be mainly attributed to better depression status and energy expenditure.


Assuntos
Disfunção Cognitiva , Jardinagem , Humanos , Estudos Transversais , Jardinagem/métodos , Masculino , Feminino , Disfunção Cognitiva/epidemiologia , Pessoa de Meia-Idade , Idoso , Análise de Mediação , Exercício Físico , Verduras , Frutas , Sistema de Vigilância de Fator de Risco Comportamental , Depressão/epidemiologia , Inquéritos e Questionários
13.
BMC Public Health ; 24(1): 590, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395834

RESUMO

OBJECTIVE: Physical exercise has the potential to mitigate addictive behaviors and relevant health issues. However, the nighttime exercise has not been studied regarding this research topic. This study aims to explore the association between nocturnal physical exercise and problematic smartphone use before sleep, as well as related health issues. METHODS: To explore the association between nighttime physical exercise and problematic smartphone use before sleep as well as related health issues, we conducted a cross-sectional survey among 1,334 college students. Their daily exercise behaviors (including timeframe, rationale, frequency, and duration), smartphone use before sleep, sleep quality, smartphone addiction, anxiety, and depression were measured by questionnaires. The associations were assessed using generalized linear models. RESULTS: Our findings indicate that nearly 70% of participants chose to perform exercise at nighttime. Among these individuals who exercised at nighttime, the frequency and duration of nighttime exercise were significantly associated with decreased probabilities of smartphone use before sleep. Additionally, the frequency and duration of nighttime exercise were associated with lower levels of smartphone addiction and anxiety disorders. CONCLUSION: Nighttime Exercise behaviors can effectively reduce sleep delays caused by problematic smartphone use before bedtime. These findings contribute to understanding the potential effects of nighttime exercise on problematic smartphone use and relevant health issues. Future research should employ more precise methodologies to examine these associations.


Assuntos
Ansiedade , Smartphone , Humanos , Estudos Transversais , Ansiedade/epidemiologia , Transtornos de Ansiedade , Sono
14.
J Appl Toxicol ; 44(7): 953-964, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38409892

RESUMO

Machine learning (ML) has shown a great promise in predicting toxicity of small molecules. However, the availability of data for such predictions is often limited. Because of the unsatisfactory performance of models trained on a single toxicity endpoint, we collected toxic small molecules with multiple toxicity endpoints from previous study. The dataset comprises 27 toxic endpoints categorized into seven toxicity classes, namely, carcinogenicity and mutagenicity, acute oral toxicity, respiratory toxicity, irritation and corrosion, cardiotoxicity, CYP450, and endocrine disruption. In addition, a binary classification Common-Toxicity task was added based on the aforementioned dataset. To improve the performance of the models, we added marketed drugs as negative samples. This study presents a toxicity predictive model, ToxMPNN, based on the message passing neural network (MPNN) architecture, aiming to predict the toxicity of small molecules. The results demonstrate that ToxMPNN outperforms other models in capturing toxic features within the molecular structure, resulting in more precise predictions with the ROC_AUC testing score of 0.886 for the Toxicity_drug dataset. Furthermore, it was observed that adding marketed drugs as negative samples not only improves the predictive performance of the binary classification Common-Toxicity task but also enhances the stability of the model prediction. It shows that the graph-based deep learning (DL) algorithms in this study can be used as a trustworthy and effective tool to assess small molecule toxicity in the development of new drugs.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Testes de Toxicidade/métodos , Humanos
15.
J Appl Toxicol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778435

RESUMO

Beryllium sulfate (BeSO4) can cause inflammation through the mechanism, which has not been elucidated. Mitochondrial DNA (mtDNA) is a key contributor of inflammation. With mitochondrial damage, released mtDNA can bind to specific receptors (e.g., cGAS) and then activate related pathway to promote inflammatory responses. To investigate the mechanism of mtDNA in BeSO4-induced inflammatory response in 16HBE cells, we established the BeSO4-induced 16HBE cell inflammation model and the ethidium bromide (EB)-induced ρ016HBE cell model to detect the mtDNA content, oxidative stress-related markers, mitochondrial membrane potential, the expression of the cGAS-STING pathway, and inflammation-related factors. Our results showed that BeSO4 caused oxidative stress, decline of mitochondrial membrane potential, and the release of mtDNA into the cytoplasm of 16HBE cells. In addition, BeSO4 induced inflammation in 16HBE cells by activating the cGAS-STING pathway. Furthermore, mtDNA deletion inhibited the expression of cGAS-STING pathway, IL-10, TNF-α, and IFN-ß. This study revealed a novel mechanism of BeSO4-induced inflammation in 16HBE cells, which contributes to the understanding of the molecular mechanism of beryllium and its compounds-induced toxicity.

16.
Mikrochim Acta ; 191(7): 397, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877314

RESUMO

A fluorescence biosensor for determination of aflatoxin B1 (AFB1) based on polydiacetylene (PDA) liposomes and exonuclease III (EXO III)-assisted recycling amplification was developed. The AFB1 aptamer partially hybridizes with complementary DNA (cDNA), which is released upon recognition of AFB1 by the aptamer. Subsequently, the cDNA hybridizes with hairpin H to form double-stranded DNA that undergoes digestion by EXO III, resulting in the cyclic release of cDNA and generation of capture DNA for further reaction. The capture DNA then hybridizes with probe modified on PDA liposomes, leading to aggregation of liposomes and subsequent fluorescence production. This strategy exhibited a limit of detection of 0.18 ng/mL within the linear range 1-100 ng/mL with a determination coefficient > 0.99. The recovery ranged from 92.81 to 106.45%, with relative standard deviations (RSD) between 1.73 and 4.26%, for corn, brown rice, peanut butter, and wheat samples. The stability, accuracy, and specificity of the method demonstrated the applicability for real sample analysis.


Assuntos
Aflatoxina B1 , Técnicas Biossensoriais , Exodesoxirribonucleases , Limite de Detecção , Lipossomos , Polímero Poliacetilênico , Polímero Poliacetilênico/química , Lipossomos/química , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Técnicas Biossensoriais/métodos , Aflatoxina B1/análise , Aptâmeros de Nucleotídeos/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Poli-Inos/química , Espectrometria de Fluorescência/métodos , Zea mays/química , Triticum/química , Oryza/química , Polímeros/química , Contaminação de Alimentos/análise
17.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000392

RESUMO

Preeclampsia (PE) is a pregnancy-specific disorder associated with shallow invasion of the trophoblast cells and insufficient remodeling of the uterine spiral artery. Protein glycosylation plays an important role in trophoblast cell invasion. However, the glycobiological mechanism of PE has not been fully elucidated. In the current study, employing the Lectin array, we found that soybean agglutinin (SBA), which recognizes the terminal N-acetylgalactosamine α1,3-galactose (GalNAc α1,3 Gal) glycotype, was significantly increased in placental trophoblast cells from PE patients compared with third-trimester pregnant controls. Upregulating the expression of the key enzyme α1,3 N-acetylgalactosaminyl transferase (GTA) promoted the biosynthesis of terminal GalNAc α1,3 Gal and inhibited the migration/invasion of HTR8/SVneo trophoblast cells. Moreover, the methylation status of GTA promoter in placental tissues from PE patients was lower than that in the third trimester by methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) analysis. Elevated GTA expression in combination with the DNA methylation inhibitor 5-azacytidine (5-AzaC) treatment increased the glycotype biosynthesis and impaired the invasion potential of trophoblast cells, leading to preeclampsia. This study suggests that elevated terminal GalNAc α1,3 Gal biosynthesis and GTA expression may be applied as the new markers for evaluating placental function and the auxiliary diagnosis of preeclampsia.


Assuntos
Movimento Celular , N-Acetilgalactosaminiltransferases , Pré-Eclâmpsia , Trofoblastos , Humanos , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Trofoblastos/metabolismo , Trofoblastos/patologia , Feminino , Gravidez , N-Acetilgalactosaminiltransferases/metabolismo , N-Acetilgalactosaminiltransferases/genética , Adulto , Metilação de DNA , Regiões Promotoras Genéticas , Linhagem Celular , Placenta/metabolismo
18.
Physiol Mol Biol Plants ; 30(2): 153-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623162

RESUMO

Leguminosae is one of the three largest families of angiosperms after Compositae and Orchidaceae. It is widely distributed and grows in a variety of environments, including plains, mountains, deserts, forests, grasslands, and even waters where almost all legumes can be found. It is one of the most important sources of starch, protein and oil in the food of mankind and also an important source of high-quality forage material for animals, which has important economic significance. In our study, the codon usage patterns and variation sources of the chloroplast genome of nine important forage legumes were systematically analyzed. Meanwhile, we also constructed a phylogenetic tree based on the whole chloroplast genomes and protein coding sequences of these nine forage legumes. Our results showed that the chloroplast genomes of nine forage legumes end with A/T bases, and seven identical high-frequency (HF) codons were detected among the nine forage legumes. ENC-GC3s mapping, PR2 analysis, and neutral analysis showed that the codon bias of nine forage legumes was influenced by many factors, among which natural selection was the main influencing factor. The codon usage frequency showed that the Nicotiana tabacum and Saccharomyces cerevisiae can be considered as receptors for the exogenous expression of chloroplast genes of these nine forage legumes. The phylogenetic relationships of the chloroplast genomes and protein coding genes were highly similar, and the nine forage legumes were divided into three major clades. Among the clades Melilotus officinalis was more closely related to Medicago sativa, and Galega officinalis was more closely related to Galega orientalis. This study provides a scientific basis for the molecular markers research, species identification and phylogenetic studies of forage legumes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01421-0.

19.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 359-366, 2024 Mar 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38970509

RESUMO

OBJECTIVES: Adverse cardiovascular events are the leading cause of death in peritoneal dialysis patients. Identifying indicators that can predict adverse cardiovascular events in these patients is crucial for prognosis. This study aims to assess the value of dual-specificity phosphatase 6 (DUSP6) in peripheral blood mononuclear cells as a predictor of adverse cardiovascular events after peritoneal dialysis in diabetic nephropathy patients. METHODS: A total of 124 diabetic nephropathy patients underwent peritoneal dialysis treatment at the Department of Nephrology of the First Affiliated Hospital of Hebei North University from June to September 2022 were selected as study subjects. The levels of DUSP6 in peripheral blood mononuclear cells were determined using Western blotting. Patients were categorized into high-level and low-level DUSP6 groups based on the median DUSP6 level. Differences in body mass index, serum albumin, high-sensitivity C-reactive protein, and dialysis duration were compared between the 2 groups. Pearson, Spearman, and multiple linear regression analyses were performed to examine factors related to DUSP6. Patients were followed up to monitor the occurrence of adverse cardiovascular events, and risk factors for adverse cardiovascular events after peritoneal dialysis were analyzed using Kaplan-Meier and Cox regression. RESULTS: By the end of the follow-up, 33 (26.61%) patients had experienced at least one adverse cardiovascular event. The high-level DUSP6 group had higher body mass index, longer dialysis duration, and higher high-sensitivity C-reactive protein, but lower serum albumin levels compared to the low-level DUSP6 group (all P<0.05). DUSP6 was negatively correlated with serum albumin levels (r=-0.271, P=0.002) and positively correlated with dialysis duration (rs=0.406, P<0.001) and high-sensitivity C-reactive protein (rs=0.367, P<0.001). Multiple linear regression analysis revealed that dialysis duration and high-sensitivity C-reactive protein were independently correlated with DUSP6 levels (both P<0.05). The cumulative incidence of adverse cardiovascular events was higher in the high-level DUSP6 group than in the low-level DUSP6 group (46.67% vs 7.81%, P<0.001). Cox regression analysis indicated that low serum albumin levels (HR=0.836, 95% CI 0.778 to 0.899), high high-sensitivity C-reactive protein (HR=1.409, 95% CI 1.208 to 1.644), and high DUSP6 (HR=6.631, 95% CI 2.352 to 18.693) were independent risk factors for adverse cardiovascular events in peritoneal dialysis patients. CONCLUSIONS: Dialysis duration and high-sensitivity C-reactive protein are independently associated with DUSP6 levels in peripheral blood mononuclear cells of diabetic nephropathy patients undergoing peritoneal dialysis. High DUSP6 levels indicate a higher risk of adverse cardiovascular events.


Assuntos
Doenças Cardiovasculares , Nefropatias Diabéticas , Fosfatase 6 de Especificidade Dupla , Leucócitos Mononucleares , Diálise Peritoneal , Humanos , Diálise Peritoneal/efeitos adversos , Doenças Cardiovasculares/etiologia , Nefropatias Diabéticas/sangue , Fosfatase 6 de Especificidade Dupla/genética , Feminino , Masculino , Leucócitos Mononucleares/metabolismo , Fatores de Risco , Proteína C-Reativa/metabolismo , Pessoa de Meia-Idade , Prognóstico , Albumina Sérica/metabolismo , Albumina Sérica/análise
20.
Biol Reprod ; 109(2): 172-183, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37338142

RESUMO

Endometrial decidualization is critical to successful uterine receptivity and embryo implantation. Dysfunction of decidualization is associated with some pregnancy-related disorders, including miscarriage. Protein glycosylation is involved in many physiological and pathological processes. Protein O-fucosyltransferase 1 (poFUT1) is a key enzyme responsible for O-fucosylation biosynthesis on glycoproteins. Bone morphogenetic protein 1 (BMP1) is an essential glycoprotein in reproduction. However, the role and molecular mechanism of fucosylated BMP1 in endometrial stromal cell decidualization are still unknown. In the current study, we found that BMP1 contains a potential O-fucosylation site. Moreover, poFUT1 and BMP1 levels in the secretory phase are higher than those in the proliferative phase, and the highest level was observed in the human uterine tissues of early pregnancy, while a decrease of poFUT1 and BMP1 in the decidua was observed in miscarriage patients. Using human endometrial stromal cells (hESCs), we demonstrated that O-fucosylation of BMP1 was elevated after induced decidualization. Moreover, the increase of BMP1 O-fucosylation by poFUT1 promoted BMP1 secretion to the extracellular matrix, and more actively binds to CHRD. The binding of BMP1 and CHRD further released BMP4 originally bound to CHRD, and activated BMP/Smad signaling pathway, thereby accelerating the decidualization of human endometrial stromal cells. In summary, these results suggest that BMP1 O-fucosylation by poFUT1 could be a potential diagnostic and therapeutic target to predict miscarriage in early pregnancy examinations.


Assuntos
Aborto Espontâneo , Gravidez , Feminino , Humanos , Glicosilação , Proteína Morfogenética Óssea 1/metabolismo , Endométrio/metabolismo , Transdução de Sinais/fisiologia , Células Estromais/metabolismo , Decídua/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA