RESUMO
Desertification leads to the extreme fragility of ecosystems and seriously threatens ecosystem functioning in desert areas. The planting of xerophytes, especially leguminous shrubs, is an effective and common means to reverse desertification. Soil microorganisms play a crucial role in nutrient cycling and energy flow in ecosystems. However, the effects of introducing leguminous shrubs on soil microbial diversity and the relevant mechanisms are not clear. Here, we employed the high-throughput absolute quantification 16S rRNA sequencing method to analyze the diversity of soil bacteria in sand-fixing areas of mixed shrublands with three combinations of shrubs, i.e., C. korshinskii × Corethrodendron scoparium (CaKCoS), C. korshinskii × Calligonum mongolicum (CaKCaM), and C. scoparium × C. mongolicum (CoSCaM), in the south of the Mu Us Sandy Land, China. This area suffered from moving dunes 20 years ago, but after introducing these shrubs to fix the dunes, the ecosystem was restored. Additionally, the effects of soil physicochemical properties on soil bacterial composition and diversity were analyzed with redundancy analysis (RDA) and structural equation modeling (SEM). It was found that the Shannon index of soil bacteria in CaKCoS was significantly higher than that in CaKCaM and CoSCaM, and the abundance of the dominant phyla, including Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Planctomycetes, Thaumarchaeota, Armatimonadetes, candidate_division_WPS-1, and Nitrospirae, increased significantly in CaKCoS and CaKCaM compared to that in CoSCaM. RDA showed that the majority of soil properties, such as total nitrogen (TN), available potassium (AK), N:P ratio, soil moisture (SM), and available phosphorus (AP), were important soil environmental factors affecting the abundance of the dominant phyla, and RDA1 and RDA2 accounted for 56.66% and 2.35% of the total variation, respectively. SEM showed that the soil bacterial α-diversity was positively affected by the soil organic carbon (SOC), N:P ratio, and total phosphorus (TP). Moreover, CaKCoS had higher SM, total carbon (TC), total potassium (TK), and AP than CaKCaM and CoSCaM. Collectively, these results highlight a conceptual framework in which the combination of leguminous shrubs can effectively drive soil bacterial diversity by improving soil physicochemical properties and maintaining ecosystem functioning during desertification reversal.
Assuntos
Ecossistema , Fabaceae , Solo/química , RNA Ribossômico 16S/genética , Carbono/análise , Conservação dos Recursos Naturais , Bactérias/genética , China , Fósforo/análise , Potássio/análise , Microbiologia do SoloRESUMO
Many studies have investigated bioaccumulation and metabolism of polycyclic aromatic hydrocarbons (PAHs) in aquatic organisms. However, lack of studies investigated both processes simultaneously, and the interaction between these two processes is less understood so far. This study investigated the bioaccumulation kinetics of PAHs and metabolic enzyme activities, including total cytochrome P450 (CYPs) and total superoxide dismutase (T-SOD), in zebrafish. Mature zebrafish were exposed to the mixture of phenanthrene and anthracene under constant concentration maintained by passive dosing systems for 16days. The results showed that PAH concentrations in zebrafish experienced a peak value after exposure for 1.5days, and then decreased gradually. The bioaccumulation equilibrium was achieved after exposure for 12days. Both of the uptake rate constants (ku) and the elimination rate constants (ke) decreased after the peak value. The variation of PAH concentrations and metabolic enzyme activities in zebrafish had an interactive relationship. The activities of CYPs and T-SOD increased initially with the increase of PAH concentrations, but decreased to the lowest state when PAH concentrations reached the peak value. When the bioaccumulation equilibrium of PAHs was achieved, CYPs and T-SOD activities also reached the steady state. In general, CYPs and T-SOD activities were activated after exposure to PAHs. The decrease of PAH concentrations in zebrafish after the peak value may be attributed to the great drop of ku and the variation of CYPs activities. This study suggests that an interactive relationship exists between bioaccumulation kinetics of PAHs and metabolic enzyme activities in aquatic organisms.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo , Animais , CinéticaRESUMO
Nanoporous thin films with pore size of sub-10 nm are fabricated using an acid-cleavable block copolymer (BCP), a benzoic imine junction between poly(ethylene oxide) (PEO) and poly(methacrylate) (PMAAz) bearing an azobenzene side chain (denoted as PEO-bei-PMAAz) as the precursor. After a thermal annealing, the block copolymers are self-assembled to form highly ordered PEO cylinders within a PMAAz matrix normal to the film, even in the case of low BCP molecular weight due to the existing of the liquid crystalline (LC) azobenzene rigid segment. Thus, PMAAz thin films with pore size of ≈7 nm and density of ≈1012 cm-2 are obtained after removal of the PEO minor phase by breaking the benzoic imine junction under mild acidic conditions. This work enriches the nanoporous polymer films from BCP precursors and introduces the LC property as a functionality which can further enhance the mechanical properties of the films and broaden their applications.
Assuntos
Ácidos/química , Nanopartículas/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de SuperfícieRESUMO
BACKGROUND: Despite several epidemiological studies reporting a significant association between adherence to the Dietary Approaches to Stop Hypertension (DASH) diet and the risk of diabetes mellitus, the results remain controversial. In this systematic review and meta-analysis, we aimed to summarize the existing evidence from published observational studies and evaluate the dose-response relationship between adherence to the DASH diet and diabetes mellitus risk. METHODS: We performed a systematic search for relevant articles published up to September 2023 using electronic databases of PubMed, Embase, Scopus, and China National Knowledge Infrastructure (CNKI). A random-effects model was applied to calculate the combined relative risks (RR) with 95% confidence intervals (CIs) for the highest compared to the lowest categories of DASH score in relation to diabetes mellitus risk. Heterogeneity among the included studies was assessed using the Cochran's Q test and I-squared (I2) statistic. Literature search, study selection, data extraction, and quality assessment were performed by two independent reviewers. RESULTS: Fifteen studies involving 557,475 participants and 57,064 diabetes mellitus cases were eligible for our analyses. Pooled analyses from included studies showed that high adherence to the DASH diet was significantly associated with a reduced risk of diabetes mellitus (RR: 0.82; 95% CI: 0.76-0.90, P < 0.001). Moreover, the dose-response meta-analysis revealed a linear trend between adherence to the DASH diet and diabetes mellitus (RR:0.99; 95%CI: 0.97-1.02, Pdose-response = 0.546, Pnonlinearity = 0.701). Subgroup analyses further revealed a significant inverse association between adherence to the DASH diet and diabetes mellitus risk in case-control studies (RR: 0.65; 95%CI: 0.29-1.43, P < 0.001), with a marginal inverse association in cohort studies (RR:0.83; 95%CI: 0.76-0.91, P < 0.001). Additionally, we conducted analyses separately by comparison and found a significant inverse association between DASH diet and diabetes mellitus risk in T3 vs T1 comparison studies (RR = 0.74; 95%CI: 0.64-0.86, P = 0.012). CONCLUSION: The findings of this study demonstrate a protective association between adherence to the DASH diet and risk of diabetes mellitus. However, further prospective cohort studies and randomized controlled trials are needed to validate these findings.
Assuntos
Diabetes Mellitus , Abordagens Dietéticas para Conter a Hipertensão , Humanos , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/prevenção & controle , Hipertensão/dietoterapia , Hipertensão/epidemiologia , Hipertensão/prevenção & controle , Cooperação do Paciente/estatística & dados numéricosRESUMO
The meiotic entry of undifferentiated germ cells is sexually specific and strictly regulated by the testicular or ovarian environment. Germline stem cells with a set of abnormal sex chromosomes and associated autosomes undergo defective meiotic processes and are eventually eliminated by yet to be defined post-transcriptional modifications. Herein, we report the role of gsdf, a member of BMP/TGFß family uniquely found in teleost, in the regulation of meiotic entry in medaka (Oryzias latipes) via analyses of gametogenesis in gsdf-deficient XX and XY gonads in comparison with their wild-type siblings. Several differentially expressed genes, including the FKB506-binding protein 7 (fkbp7), were significantly upregulated in pubertal gsdf-deficient gonads. The increase in alternative pre-mRNA isoforms of meiotic synaptonemal complex gene sycp3 was visualized using Integrative Genomics Viewer and confirmed by real-time qPCR. Nevertheless, immunofluorescence analysis showed that Sycp3 protein products reduced significantly in gsdf-deficient XY oocytes. Transmission electron microscope observations showed that normal synchronous cysts were replaced by asynchronous cysts in gsdf-deficient testis. Breeding experiments showed that the sex ratio deviation of gsdf-/- XY gametes in a non-Mendelian manner might be due to the non-segregation of XY chromosomes. Taken together, our results suggest that gsdf plays a role in the proper execution of cytoplasmic and nuclear events through receptor Smad phosphorylation and Sycp3 dephosphorylation to coordinate medaka gametogenesis, including sex-specific mitotic divisions and meiotic recombination.
Assuntos
Oryzias , Animais , Masculino , Feminino , Oryzias/genética , Oryzias/metabolismo , Gônadas/metabolismo , Testículo , Ovário/metabolismo , Meiose/genéticaRESUMO
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health threat globally, especially during the beginning of the pandemic in 2020. Reverse transcription-quantitative PCR (RT-qPCR) is utilized for viral RNA detection as part of control measures to limit the spread of COVID-19. Collecting nasopharyngeal swabs for RT-qPCR is a routine diagnostic method for COVID-19 in clinical settings, but its large-scale implementation is hindered by a shortage of trained health professionals. Despite concerns over its sensitivity, saliva has been suggested as a practical alternative sampling approach to the nasopharyngeal swab for viral RNA detection. In this study, we spiked saliva from healthy donors with inactivated SARS-CoV-2 from an international standard to evaluate the effect of saliva on viral RNA detection. On average, the saliva increased the cycle threshold (CT) values of the SARS-CoV-2 RNA samples by 2.64 compared to the viral RNA in viral transport medium. Despite substantial variation among different donors in the effect of saliva on RNA quantification, the outcome of the RT-qPCR diagnosis was largely unaffected for viral RNA samples with CT values of <35 (1.55 log10 IU/mL). The saliva-treated viral RNA remained stable for up to 6 h at room temperature and 24 h at 4°C. Further supplementing protease and RNase inhibitors improved the detection of viral RNA in the saliva samples. Our data provide practical information on the storage conditions of saliva samples and suggest optimized sampling procedures for SARS-CoV-2 diagnosis. IMPORTANCE The primary method for detection of SARS-CoV-2 is using nasopharyngeal swabs, but a shortage of trained health professionals has hindered its large-scale implementation. Saliva-based nucleic acid detection is a widely adopted alternative, due to its convenience and minimally invasive nature, but the detection limit and direct impact of saliva on viral RNA remain poorly understood. To address this gap in knowledge, we used a WHO international standard to evaluate the effect of saliva on SARS-CoV-2 RNA detection. We describe the detection profile of saliva-treated SARS-CoV-2 samples under different storage temperatures and incubation periods. We also found that adding protease and RNase inhibitors could improve viral RNA detection in saliva. Our research provides practical recommendations for the optimal storage conditions and sampling procedures for saliva-based testing, which can improve the efficiency of COVID-19 testing and enhance public health responses to the pandemic.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , Saliva , Técnicas de Laboratório Clínico/métodos , RNA Viral/genética , RNA Viral/análise , EndorribonucleasesRESUMO
Radionuclide therapy (RNT) is an effective method for the clinical precise treatment of cancer. However, the uneven dose distribution and rapid metabolism of nuclides limit the effective killing of tumors. To overcome the limitations of radionuclide therapeutic approaches, combining different therapeutic strategies to treat cancer has manifested great promise in basic and clinical research. Here, a new combination therapy strategy was developed to combine radionuclide therapy, sonodynamic therapy and photothermal therapy (RNT-SDT-PTT) under radionuclide imaging guided achieve highly effective combination therapy. We prepared a polydopamine-modified Au nanostar (AN), then loaded with the acoustic sensitizer protoporphyrin (IX) and labeled with diagnostic (99mTc) or therapeutic (131I) radionuclides (131I/99mTc-AN@D/IX) for the precise diagnosis and treatment of pancreatic cancer. After intratumor administration, single photon emission computed tomography imaging showed that the nanocarriers were mostly retained in the tumor compared to free radionuclide. As well as using near-infrared light to trigger PTT and ultrasound with high penetration depth to activate IX to generate reactive oxygen species achieved SDT of tumor. The ultimate significantly improved the inhibitory effects by the RNT-SDT-PTT combined therapy for pancreatic cancer. Therefore, this study proposes an effective radionuclide combination therapy regimen consisting of three widely used treatments, offering promising prospects for the future of oncology.
Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Terapia Fototérmica , Radioisótopos do Iodo , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/terapia , Linhagem Celular Tumoral , Neoplasias PancreáticasRESUMO
C. korshinskii is one of the most widely-planted sand-fixing legumes in northwest China and exploring its rhizosphere microbiome is of great ecological importance. However, the effect of long-term sand fixation on the composition, diversity, and underlying functions of microbes in the C. korshinskii rhizosphere in dryland ecosystems remain unclear. Here, we performed high-throughput sequencing using a 16S rRNA (absolute quantification) and bacterial functional annotation of prokaryotic taxa (FAPROTAX) analysis and an ITS (relative quantification) and fungal functional guild (FUNGuild) analysis to investigate the C. korshinskii rhizosphere microbiome and metabolic functional groups at different sand-fixing ages (six years, CK6; twelve years, CK12; and eighteen years, CK18) and determined the physicochemical properties of the rhizosphere soil. Results showed that the key bacterial taxa of the rhizosphere were significantly more abundant in CK18 than in CK12 and CK6 at the phylum-class-genus level, and that fungal Glomeromycota was also significantly more abundant in the CK18 rhizosphere compared to CK12 and CK6. Among these bacterial taxa, the enrichment effect of key, functional, genus-level species of bacteria was the most obvious, including Rhizobium, Ensifer, Neorhizobium, Mesorhizobium, Streptomyces, Sphingomonas, and Flavobacterium, which are N-fixing and/or phosphate-solubilizing groups. The significant improvement seen in the physicochemical properties of the CK18 rhizosphere soil, including the higher total nitrogen (TN), available nitrogen (AN), pH, electrical conductivity (EC), higher N:P ratio, and lower C:N ratio, all demonstrated the relationship between the rhizosphere microbes and soil carbon (C) and nitrogen (N) cycling. A redundancy analysis (RDA) of different taxonomic levels indicated a close positive relationship between rhizosphere microbes and AN. In addition, the functional groups of the C. korshinskii rhizosphere bacteria were closely related to soil AN and were mainly composed of chemoheterotrophy and aerobic chemoheterotrophy. A Spearman correlation analysis revealed that these functional groups were mainly identified from bacterial Actinobacteria, Proteobacteria, Verrucomicrobia, Bacteroidetes, and fungal Glomeromycota. Our study provides evidence that the rhizosphere microbes of C. korshinskii are closely related to the accumulation of N in the restoration of desert ecosystems, and that the ecological functional processes they are involved in mainly involve C and N cycles, which play an important role in desertification reversal.
Assuntos
Caragana , Rhizobiaceae , Rizosfera , Ecossistema , Solo/química , Caragana/genética , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Nitrogênio/análiseRESUMO
The excessive ammonia produced in pond aquaculture processes cannot be ignored. In this review, we present the distribution and diversity of ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing bacteria (AnAOB) in the pond environment. Combined with environmental conditions, we analyze the advantages of AOA and AnAOB in aquaculture water treatment and discuss the current situation of pond water treatment engineering involving these microbes. AOA and AnAOB play an important role in the nitrogen removal process of aquaculture pond water, especially in seasonal low temperatures and anoxic sediment layers. Finally, we prospect the application of bioreactors to purify pond aquaculture water using AOA and AnAOB, in autotrophic nitrogen removal, which can reduce the production of greenhouse gases (such as nitrous oxide) and is conducive to the development of environmentally sustainable pond aquaculture.
RESUMO
Dissolved organic matter (DOM) is ubiquitous in natural aquatic ecosystems. The association of hydrophobic organic compounds (HOCs), such as polycyclic aromatic hydrocarbons (PAHs), with DOM may have a large impact on HOC fractions in water and their bioconcentration in fish. However, the effects of DOM on HOC bioconcentration in fish are not well understood, especially whether DOM will affect the bioconcentration steady-state concentrations of HOCs in fish is still confusing. Thus, this study investigated the effects of three DOM including gallic acid (GA), tannic acid (TA), and humic acid (HA) with molecular weights ranging from 170â¯Da to about 10â¯kDa at different concentrations (1, 5, and 15â¯mgOCâ¯L-1) on the bioconcentration of PAHs including phenanthrene, anthracene, fluoranthene, and pyrene in zebrafish (Danio rerio), with the PAH freely dissolved concentrations maintained constant by passive dosing systems. The results revealed that the presence of DOM generally increased the bioconcentration steady-state concentrations of the PAHs in zebrafish (Cb-ss), with the increase ranging from 28.1% to 204.0%, and the increase of Cb-ss promoted by TA with middle molecular weight (1700â¯Da) was the highest among the studied DOM. Moreover, the Cb-ss increased with the concentrations of GA with low molecular weight and TA with middle molecular weight in water, whereas decreased with increasing concentrations of HA with high molecular weight. The uptake rate constants of the PAHs in zebrafish with DOM were higher than that without DOM. Ingestion of DOM and direct accumulation of PAHs associated with DOM might be primary influencing mechanisms of DOM on the Cb-ss, and whether the facilitated diffusive mass transfer by DOM will affect the Cb-ss needs to be further studied. This study suggested that DOM-associated HOCs should be considered in future HOC risk assessment in addition to the freely dissolved HOCs.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo , Animais , Substâncias Húmicas , CinéticaRESUMO
A fully rollable nanocomposite-based nanogenerator (NCG) is developed by integrating a lead-free piezoelectric hybrid layer with a type of nanofiber-supported silver nanowire (AgNW) network as electrodes. The thin-film nanocomposite is composed of electroactive polyvinylidene fluoride (PVDF) polymer matrix and compositionally modified potassium sodium niobate-based nanoparticles (NPs) with a high piezoelectric coefficient ( d33) of 53 pm/V, which is revealed by the piezoresponse force microscopy measurements. Under periodical agitation at a compressive force of 50 N and 1 Hz, the NCG can steadily render high electric output up to an open-circuit voltage of 18 V and a short-circuit current of 2.6 µA. Of particular importance is the decent rollability of the NCG, as indicated by the negligible decay in the electric output after it being repeatedly rolled around a gel pen for 200 cycles. Besides, the biocompatible NCG can potentially be used to scavenge biomechanical energy from low-frequency human motions, as demonstrated by the scenarios of walking and elbow joint movement. These results rationally expand the feasibility of the developed NCG toward applications in lightweight, diminutive, and multifunctional rollable or wearable electronic devices.
RESUMO
The orientation transition from perpendicular to parallel alignment of PEO cylindrical domains of PEO-b-PMA(Az) films has been demonstrated by extruding the block copolymer (BCP) solutions through a micropore of a plastic gastight syringe. The parallelized orientation of PEO domains induced by this micropore extrusion can be recovered to perpendicular alignment via ultrasonication of the extruded BCP solutions and subsequent annealing. A plausible mechanism is proposed in this study. The BCP films can be used as templates to prepare nanowire arrays with controlled layers, which has enormous potential application in the field of integrated circuits.