Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Biol Chem ; 300(5): 107226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537697

RESUMO

Epstein-Barr virus (EBV) is a human tumor virus associated with a variety of malignancies, including nasopharyngeal carcinoma, gastric cancers, and B-cell lymphomas. N6-methyladenosine (m6A) modifications modulate a wide range of cellular processes and participate in the regulation of virus-host cell interactions. Here, we discovered that EBV infection downregulates toll-like receptor 9 (TLR9) m6A modification levels and thus inhibits TLR9 expression. TLR9 has multiple m6A modification sites. Knockdown of METTL3, an m6A "writer", decreases TLR9 protein expression by inhibiting its mRNA stability. Mechanistically, Epstein-Barr nuclear antigen 1 increases METTL3 protein degradation via K48-linked ubiquitin-proteasome pathway. Additionally, YTHDF1 was identified as an m6A "reader" of TLR9, enhancing TLR9 expression by promoting mRNA translation in an m6A -dependent manner, which suggests that EBV inhibits TLR9 translation by "hijacking" host m6A modification mechanism. Using the METTL3 inhibitor STM2457 inhibits TLR9-induced B cell proliferation and immunoglobulin secretion, and opposes TLR9-induced immune responses to assist tumor cell immune escape. In clinical lymphoma samples, the expression of METTL3, YTHDF1, and TLR9 was highly correlated with immune cells infiltration. This study reveals a novel mechanism that EBV represses the important innate immunity molecule TLR9 through modulating the host m6A modification system.


Assuntos
Adenosina , Herpesvirus Humano 4 , Metiltransferases , Proteínas de Ligação a RNA , Receptor Toll-Like 9 , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Linfócitos B/metabolismo , Linfócitos B/imunologia , Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Evasão da Resposta Imune , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Linhagem Celular Tumoral
2.
J Biol Chem ; 299(9): 105082, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495108

RESUMO

The development and progression of nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. NPC is usually asymptomatic until it spreads to other sites, and more than 70% of cases are classified as locally advanced disease at diagnosis. EBV-positive nasopharyngeal cancer tissues express only limited viral latent proteins, but express high levels of the EBV-encoded BamHI-A rightward transcript (BART) miRNA molecules. Here, we report that EBV-miRNA-BART2-5p (BART2-5p) promotes NPC cell invasion and metastasis in vivo and in vitro but has no effect on NPC cell proliferation and apoptosis. In addition, BART2-5p altered the mRNA and miRNA expression profiles of NPC cells. The development of human tumors has been reported to be associated with altered miRNAs expression, and overall miRNAs expression is reduced in many types of tumors. We found that BART2-5p downregulated the expression of several miRNAs that could exert oncogenic functions. Mechanistically, BART2-5p directly targets the RNase III endonuclease DICER1, inhibiting its function of cleaving double-stranded stem-loop RNA into short double-stranded RNA, which in turn causes altered expression of a series of key epithelial-mesenchymal transition molecules, and reverting DICER1 expression can rescue this phenotype. Furthermore, analysis from clinical samples showed a negative correlation between BART2-5p and DICER1 expression. According to our study, high expression of BART2-5p in tissues and plasma of patients with NPC is associated with poor prognosis. Our results suggest that, BART2-5p can accelerate NPC metastasis through modulating miRNA profiles which are mediated by DICER1, implying a novel role of EBV miRNAs in the pathogenesis of NPC.


Assuntos
Infecções por Vírus Epstein-Barr , MicroRNAs , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Ribonuclease III , Humanos , Infecções por Vírus Epstein-Barr/enzimologia , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Ribonuclease III/genética , Ribonuclease III/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular/genética
3.
Cancer Immunol Immunother ; 73(1): 7, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231305

RESUMO

The search for effective combination therapy with immune checkpoint inhibitors (ICI) has become important for cancer patients who do not respond to the ICI well. Histone deacetylases (HDACs) inhibitors have attracted wide attention as anti-tumor agents. ACY-1215 is a selective inhibitor of HDAC6, which can inhibit the growth of a variety of tumor. We previously revealed that HDAC family is highly expressed in colorectal cancer specimens and mouse models. In this study, ACY-1215 was combined with anti-PD1 to treat tumor-bearing mice associated with colorectal cancer. ACY-1215 combined with anti-PD1 effectively inhibited the colorectal tumor growth. The expression of PD-L1 in tumor of mice were inhibited by ACY-1215 and anti-PD1 combination treatment, whereas some biomarkers reflecting T cell activation were upregulated. In a co-culture system of T cells and tumor cells, ACY-1215 helped T cells to kill tumor cells. Mechanically, HDAC6 enhanced the acetylation of STAT1 and inhibited the phosphorylation of STAT1, thus preventing STAT1 from entering the nucleus to activate PD-L1 transcription. This study reveals a novel regulatory mechanism of HDAC6 on non-histone substrates, especially on protein acetylation. HDAC6 inhibitors may be of great significance in tumor immunotherapy and related combination strategies.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Ácidos Hidroxâmicos , Pirimidinas , Humanos , Animais , Camundongos , Acetilação , Imunoterapia , Neoplasias Colorretais/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Fator de Transcrição STAT1 , Desacetilase 6 de Histona
4.
Biometals ; 36(3): 549-562, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650365

RESUMO

Lactoferrin (Lf), a multiple functional natural immune protein, is widely distributed in mammalian milk and glandular secretions (bile, saliva, tears and nasal mucosal secretions, etc.). In the previous study, we found that Lf plays an anti-inflammatory and anti-tumorigenesis role in AOM/DSS (azoxymethane/dextran sulfate sodium) induced mouse colitis-associated colon cancer model. Although we found that Lf has anti-inflammatory effects in chronic inflammation, its specific role and mechanisms in acute inflammation have not been clarified. Here, we reported that the expression levels of Lf were significantly increased when the organism was infected by Gram-negative bacteria. We then explored the role and potential mechanism of Lf in lipopolysaccharide (LPS)-induced acute inflammation. In the LPS-induced acute abdominal inflammation model, Lf deficiency aggravated inflammatory response and promoted macrophage chemotaxis to the inflammation site. Lf inhibited macrophage chemotaxis by suppressing the expression of macrophage-associated chemokines Ccl2 and Ccl5. Highly activated NF-κB signaling in Lf-/- mice was responsible for the high expression of Ccl2 and Ccl5. Our results suggested that the anti-inflammatory effect of Lf offers a new potential treatment for acute inflammatory diseases.


Assuntos
Inflamação , Lactoferrina , Animais , Camundongos , Inflamação/imunologia , Inflamação/metabolismo , Lactoferrina/deficiência , Lactoferrina/genética , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , NF-kappa B/farmacologia
5.
J Immunol ; 204(9): 2589-2599, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32198140

RESUMO

S100A8 is a damage-associated molecular pattern protein released by monocytes, playing a decisive role in the development of inflammation. Nonresolving inflammation is viewed as a driving force in tumorigenesis, and its role in tumor immune escape also attracted attentions. PD-1/PD-L1 axis is a critical determinant of physiological immune homeostasis, and anti-PD-1 or PD-L1 therapy has becoming the most exciting field of oncology. Multiple regulation mechanisms have been contributed to PD-L1 expression modulation including inflammatory mediators. In this study we reported that S100A8 significantly induced PD-L1 expression in monocytes/macrophages but not in tumor cells. S100A8 induced PD-L1 transcription through the TLR4 receptor and multiple crucial pathways of inflammation process. S100A8 modulated the histone modification of the PD-L1 promoter in monocytes/macrophages. S100A8-pretreated macrophages had immunosuppressive function and attenuated the antitumor ability of CTLs both in vitro and in vivo. A highly positive correlation existed between S100A8 expression and PD-L1 expression in human cancer specimens. To our knowledge, our study uncovers a novel molecular mechanism for regulating PD-L1 transcription by an inflammatory mediator S100A8, and reveals the importance of comprehensive understanding the role of inflammation in tumorigenesis as well as in tumor immune escape.


Assuntos
Antígeno B7-H1/imunologia , Calgranulina A/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Neoplasias/genética , Evasão Tumoral/imunologia , Animais , Carcinogênese/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Monócitos/imunologia , Regiões Promotoras Genéticas/imunologia , Células RAW 264.7 , Células THP-1 , Receptor 4 Toll-Like/imunologia , Transcrição Gênica/imunologia
6.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941785

RESUMO

Biological macromolecule condensates formed by liquid-liquid phase separation (LLPS) have been discovered in recent years to be prevalent in biology. These condensates are involved in diverse processes, including the regulation of gene expression. LLPS of proteins have been found in animal, plant, and bacterial species but have scarcely been identified in viral proteins. Here, we discovered that Epstein-Barr virus (EBV) EBNA2 and EBNALP form nuclear puncta that exhibit properties of liquid-like condensates (or droplets), which are enriched in superenhancers of MYC and Runx3. EBNA2 and EBNALP are transcription factors, and the expression of their target genes is suppressed by chemicals that perturb LLPS. Intrinsically disordered regions (IDRs) of EBNA2 and EBNALP can form phase-separated droplets, and specific proline residues of EBNA2 and EBNALP contribute to droplet formation. These findings offer a foundation for understanding the mechanism by which LLPS, previously determined to be related to the organization of P bodies, membraneless organelles, nucleolus homeostasis, and cell signaling, plays a key role in EBV-host interactions and is involved in regulating host gene expression. This work suggests a novel anti-EBV strategy where developing appropriate drugs of interfering LLPS can be used to destroy the function of the EBV's transcription factors.IMPORTANCE Protein condensates can be assembled via liquid-liquid phase separation (LLPS), a process involving the concentration of molecules in a confined liquid-like compartment. LLPS allows for the compartmentalization and sequestration of materials and can be harnessed as a sensitive strategy for responding to small changes in the environment. This study identified the Epstein-Barr virus (EBV) proteins EBNA2 and EBNALP, which mediate virus and cellular gene transcription, as transcription factors that can form liquid-like condensates at superenhancer sites of MYC and Runx3. This study discovered the first identified LLPS of EBV proteins and emphasized the importance of LLPS in controlling host gene expression.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/química , Regulação da Expressão Gênica , Proteínas Intrinsicamente Desordenadas/química , Proteínas Virais/química , Linhagem Celular Tumoral , Nucléolo Celular/química , Núcleo Celular , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Genes myc , Células HEK293 , Herpesvirus Humano 4/fisiologia , Humanos , Leucócitos Mononucleares , Microscopia de Fluorescência , Prolina/química , Regiões Promotoras Genéticas , Domínios Proteicos
7.
J Biol Chem ; 294(13): 4854-4866, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30674552

RESUMO

Epstein-Barr virus-associated gastric cancer (EBVaGC) accounts for about 10% of all gastric cancer cases and has unique pathological and molecular characteristics. EBV encodes a large number of microRNAs, which actively participate in the development of EBV-related tumors. Here, we report that EBV-miR-BART3-3p (BART3-3p) promotes gastric cancer cell growth in vitro and in vivo Moreover, BART3-3p inhibits the senescence of gastric cancer cells induced by an oncogene (RASG12V) or chemotherapy (irinotecan). LMP1 and EBNA3C encoded by EBV have also been reported to have antisenescence effects; however, in EBVaGC specimens, LMP1 expression is very low, and EBNA3C is not expressed. BART3-3p inhibits senescence of gastric cancer cells in a nude mouse model and inhibits the infiltration of natural killer cells and macrophages in tumor by altering the senescence-associated secretory phenotype (SASP). Mechanistically, BART3-3p directly targeted the tumor suppressor gene TP53 and caused down-regulation of p53's downstream target, p21. Analysis from clinical EBVaGC samples also showed a negative correlation between BART3-3p and TP53 expression. It is well known that mutant oncogene RASG12V or chemotherapeutic drugs can induce senescence, and here we show that both RASG12V and a chemotherapy drug also can induce BART3-3p expression in EBV-positive gastric cancer cells, forming a feedback loop that keeps the EBVaGC senescence at a low level. Our results suggest that, although TP53 is seldom mutated in EBVaGC, its expression is finely regulated such that EBV-encoded BART3-3p may play an important role by inhibiting the senescence of gastric cancer cells.


Assuntos
Carcinogênese/metabolismo , Senescência Celular , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/metabolismo , MicroRNAs/biossíntese , RNA Neoplásico/biossíntese , RNA Viral/biossíntese , Neoplasias Gástricas/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Herpesvirus Humano 4/genética , Humanos , MicroRNAs/genética , RNA Neoplásico/genética , RNA Viral/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
8.
Biochem Biophys Res Commun ; 524(4): 816-824, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32044038

RESUMO

Nasopharyngeal carcinoma (NPC) is a malignant tumor from head and neck with characteristics in remarkable geographic and racial distribution worldwide, which has the important features of vigorous proliferation and inflammatory cells infiltration. By analyzing the expression profile data of NPC, we found that the E2F-related gene sets were highly enriched in NPC tissues. E2F transcription factor family is an important cycle regulator, which can promote the malignant proliferation and tumorigenesis. Here, we showed that E2Fs accelerated malignant phenotypes of NPC cells. RNA sequencing revealed that E2Fs can significantly up-regulate the inflammatory pathways in NPC cells. E2F1, as a transcription factor, can active the transcription activity of IL-6 promoter, and modulate macrophage function through a microenvironment manner. Thus, this study characterized a significant role of E2Fs in inflammation and tumorigenesis of NPC, which provided a promising anti-tumor target in NPC, since E2Fs are highly expressed and activated in NPC.


Assuntos
Carcinogênese/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F3/genética , Regulação Neoplásica da Expressão Gênica , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Animais , Apoptose/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Estudos de Coortes , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F3/antagonistas & inibidores , Fator de Transcrição E2F3/metabolismo , Humanos , Inflamação , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Nus , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Células THP-1 , Carga Tumoral , Microambiente Tumoral/genética
9.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209170

RESUMO

Epstein-Barr virus (EBV) is the first human virus found to encode many microRNAs. It is etiologically linked to nasopharyngeal carcinoma and EBV-associated gastric carcinoma. During the latent infection period, there are only a few EBV proteins expressed, whereas EBV microRNAs, such as the BamHI-A region rightward transcript (BART) microRNAs, are highly expressed. However, how these BART miRNAs precisely regulate the tumor growth in nasopharyngeal carcinoma and gastric carcinoma remains obscure. Here, we report that upregulation of EBV-miR-BART5-3p promotes the growth of nasopharyngeal carcinoma and gastric carcinoma cells. BART5-3p directly targets the tumor suppressor gene TP53 on its 3'-untranslated region (3'-UTR) and consequently downregulates CDKN1A, BAX, and FAS expression, leading to acceleration of the cell cycle progress and inhibition of cell apoptosis. BART5-3p contributes to the resistance to chemotherapeutic drugs and ionizing irradiation-induced p53 increase. Moreover, BART5-3p also facilitates degradation of p53 proteins. BART5-3p is the first EBV-microRNA to be identified as inhibiting p53 expression and function, which suggests a novel mechanism underlying the strategies employed by EBV to maintain latent infection and promote the development of EBV-associated carcinomas.IMPORTANCE EBV encodes 44 mature microRNAs, which have been proven to promote EBV-associated diseases by targeting host genes and self-viral genes. In EBV-associated carcinomas, the expression of viral protein is limited but the expression of BART microRNAs is extremely high, suggesting that they could be major factors in the contribution of EBV-associated tumorigenesis. p53 is a critical tumor suppressor. Unlike in most human solid tumors, TP53 mutations are rare in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues, suggesting a possibility that some EBV-encoded products suppress the functions of p53. This study provides the first evidence that a BART microRNA can suppress p53 expression by directly targeting its 3'-UTR. This study implies that EBV can use its BART microRNAs to modulate the expression of p53, thus maintaining its latency and contributing to tumorigenesis.


Assuntos
Regiões 3' não Traduzidas/genética , Infecções por Vírus Epstein-Barr/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Gástricas/patologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Feminino , Herpesvirus Humano 4/fisiologia , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virologia , Prognóstico , RNA Viral/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/virologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Mol Biol ; 435(16): 167955, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642156

RESUMO

An emerging set of results suggests that liquid-liquid phase separation (LLPS) is the basis for the formation of membrane-less compartments in cells. Evidence is now mounting that various types of virus-induced membrane-less compartments and organelles are also assembled via LLPS. Specifically, viruses appear to use intracellular phase transitions to form subcellular microenvironments known as viral factories, inclusion bodies, or viroplasms. These compartments - collectively referred to as viral biomolecular condensates - can be used to concentrate replicase proteins, viral genomes, and host proteins that are required for virus replication. They can also be used to subvert or avoid the intracellular immune response. This review examines how certain DNA or RNA viruses drive the formation of viral condensates, the possible biological functions of those condensates, and the biophysical and biochemical basis for their assembly.


Assuntos
Condensados Biomoleculares , Vírus de DNA , Vírus de RNA , Vírus de RNA/química , Vírus de RNA/fisiologia , Replicação Viral , Vírus de DNA/química , Vírus de DNA/fisiologia , Transição de Fase , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/virologia
11.
J Innate Immun ; 14(4): 380-392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34724662

RESUMO

BACKGROUND AND AIMS: Inflammatory mediator S100A9 is dramatically elevated in ulcerative colitis and correlates with disease severity. S100A9 is a potential molecule to target for the treatment of colitis, but to date, there is no effective targeting method. The aim of this study was to develop a safe and effective nano-delivery system targeting S100A9 and to evaluate its therapeutic efficacy in ulcerative colitis mouse model. METHODS: We designed an oral nano-delivery system using poly (lactic acid-glycolic acid) (PLGA)-loaded S100A9 inhibitor tasquinimod to synthesize PLGA-TAS nanoparticles. TLR4-overexpressing macrophage membranes (MMs) were used to wrap the nanoparticles to make MM-PLGA-TAS, which allowed the nanoparticles to acquire the ability to specifically enrich the colitis region. RESULTS: MM-PLGA-TAS was endocytosed by inflammatory phenotype RAW264.7 cells in vitro and can efficiently enrich in inflamed mouse colitis tissue in vivo. A chemically induced ulcerative colitis mouse model was used to evaluate the therapeutic effect of oral MM-PLGA-TAS. MM-PLGA-TAS significantly alleviated the symptoms of ulcerative colitis, and mechanically, MM-PLGA-TAS achieved immunomodulatory and suppressive effects by reducing S100a9 and other cytokines in the colitis region. CONCLUSION: We describe a convenient, orally targeted colitis drug delivery system that cures the disease in ulcerative colitis mice. This system substantially increases drug accumulation in inflamed colonic tissue, reduces the risk of systemic exposure, and is a promising therapeutic approach against ulcerative colitis.


Assuntos
Colite Ulcerativa , Colite , Nanopartículas , Animais , Biomimética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Macrófagos/metabolismo , Camundongos , Nanopartículas/química
12.
Front Cell Dev Biol ; 9: 729941, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722510

RESUMO

Interactions of genetic susceptibility factors, immune microenvironment, and microbial factors contribute to gastrointestinal tumorigenesis. The suppressive immune microenvironment reshaped by the tumors during gastrointestinal tumorigenesis directly contributes to T-cell depletion in tumor immunotherapy. Soluble factors secreted by tumor cells or stromal cells collectively shape the suppressive immune environment. Here, we reviewed the key factors in the gastrointestinal tumor microenvironment that influence tumor immunotherapy, focusing on the effects of fibroblasts, neuronal cells, soluble cytokines, exosomes, and the microbiome in tumor microenvironment. Research in this field has helped to identify more precise and effective biomarkers and therapeutic targets in the era of tumor immunotherapy.

13.
Immun Inflamm Dis ; 9(2): 351-362, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33434416

RESUMO

INTRODUCTION: N6 -methyladenosine (m6 A) is the most prevalent modification that occurs in messenger RNA (mRNA), affecting mRNA splicing, translation, and stability. This modification is reversible, and its related biological functions are mediated by "writers," "erasers," and "readers." The field of viral epitranscriptomics and the role of m6 A modification in virus-host interaction have attracted much attention recently. When Epstein-Barr virus (EBV) infects a human B lymphocyte, it goes through three phases: the pre-latent phase, latent phase, and lytic phase. Little is known about the viral and cellular m6 A epitranscriptomes in EBV infection, especially in the pre-latent phase during de novo infection. METHODS: Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and MeRIP-RT-qPCR were used to determine the m6 A-modified transcripts during de novo EBV infection. RIP assay was used to confirm the binding of EBNA2 and m6 A readers. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and Western blot analysis were performed to test the effect of m6 A on the host and viral gene expression. RESULTS: Here, we provided mechanistic insights by examining the viral and cellular m6 A epitranscriptomes during de novo EBV infection, which is in the pre-latent phase. EBV EBNA2 and BHRF1 were highly m6 A-modified upon EBV infection. Knockdown of METTL3 (a "writer") decreased EBNA2 expression levels. The emergent m6 A modifications induced by EBV infection preferentially distributed in 3' untranslated regions of cellular transcripts, while the lost m6 A modifications induced by EBV infection preferentially distributed in coding sequence regions of mRNAs. EBV infection could influence the host cellular m6 A epitranscriptome. CONCLUSIONS: These results reveal the critical role of m6 A modification in the process of de novo EBV infection.


Assuntos
Infecções por Vírus Epstein-Barr , Metilação de DNA , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , RNA
14.
J Cancer ; 12(23): 7041-7051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34729106

RESUMO

N6-methyladenosine (m6A) is the most abundant modification in eukaryotic mRNAs, which plays an important role in regulating multiple biological processes. ATM is a major protein kinase that regulates the DNA damage response. Here, we identified that ATM is a m6A-modificated gene. METTL3 (a m6A "writer") and FTO (a m6A "eraser") oppositely regulated ATM expression and its downstream signaling. Mechanically, m6A "readers" YTHDFs and eIF3A suppressed ATM expression in the post-transcriptional levels. We also revealed the oncogenic potential of METTL3 and YTHDF1 related to ATM modulation. This is the first report that ATM, a master in the DNA damage response, is modified by m6A epigenetic modification, and METTL3 disrupts the ATM stability via m6A modification, thereby affecting the DNA-damage response.

15.
J Hematol Oncol ; 14(1): 58, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827645

RESUMO

Lactoferrin (Lf) is widely distributed in mammalian milk, various tissues, and their exocrine fluids and has many physiological functions, such as bacteriostasis, antivirus, and immunoregulation. Here, we provide evidence that lactoferrin is required for early stages of B cell development in mice. Lactoferrin-deficient (Lf-/-) C57BL/6 mice showed systematic reduction in total B cells, which was attributed to the arrest of early B cell development from pre-pro-B to pro-B stage. Although the Lf-/- B cell "seeds" generated greater pro-B cells comparing to wild type (WT) littermates, the Lf-/- mice bone marrow had less stromal cells, and lower CXCL12 expression, produced a less favorable "microenvironment" for early B cell development. The underlying mechanism was mediated through ERK and AKT signalings and an abnormality in the transcription factors related to early differentiation of B cells. The Lf-/- mice also displayed abnormal antibody production in T cell-dependent and T cell-independent immunization experiments. In a pristane-induced lupus model, Lf-/- mice had more serious symptoms than WT mice, whereas lactoferrin treatment alleviated these symptoms. This study demonstrates a novel role of lactoferrin in early B cell development, suggesting a potential benefit for using lactoferrin in B cell-related diseases.


Assuntos
Anti-Infecciosos/uso terapêutico , Linfócitos B/metabolismo , Lactoferrina/uso terapêutico , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL
16.
IEEE Trans Neural Netw Learn Syst ; 31(2): 612-625, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31056521

RESUMO

Probability density forecast offers the whole distributions of forecasting targets, which brings greater flexibility and practicability than the other probabilistic forecast models such as prediction interval (PI) and quantile forecast. However, existing density forecast models have introduced various constraints on forecasted distributions, which has limited their ability to approximate real distributions and may result in suboptimality. In this paper, a distribution-free density forecast model based on deep learning is proposed, in which the real cumulative density functions (CDFs) of forecasting target are approximated by a large-capacity positive-weighted deep neural network (NN). Benefiting from the universal approximation ability of NNs, the range of forecasted distributions has been proven to contain all the distributions with continuous CDFs, which is superior to existing models' considering both width and accordance with reality. Three tests from different scenarios were implemented for evaluation, i.e., very-short-term wind power, wind speed, and day-ahead electricity price forecast, in which the proposed density forecast model has shown superior performance over the state of the art.

17.
Oncogene ; 39(1): 122-135, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31462711

RESUMO

Lactoferrin, an innate immunity molecule, is involved in anti-inflammatory, anti-microbial, and anti-tumor activities. We previously reported that lactoferrin is downregulated in specimens of nasopharyngeal carcinoma and negatively associated with tumor progression and metastasis of patients with nasopharyngeal carcinoma. However, the relationship between lactoferrin and the pro-metastatic microenvironment has not been reported yet. Here, by using the lactoferrin knockout mouse, we found that lactoferrin deficiency facilitated melanoma cells metastasizing to lungs, through recruiting myeloid-derived suppressor cells (MDSCs) in the lungs. Mechanistic studies showed that in the lung microenvironment of the lactoferrin knockout mice, the TLR9 signaling was the most repressed signaling. Lactoferrin can induce MDSCs differentiation and apoptosis, as well as upregulate TLR9 expression. TLR9 agonist or lactoferrin treatment can rescue this phenotype in the tumor metastasis mouse model. Our results suggest a protective role of lactoferrin in cancer metastasis, along with a deficiency in certain components of the innate immune system, may lead to a pro-metastatic tumor microenvironment.


Assuntos
Lactoferrina/genética , Melanoma Experimental/genética , Células Supressoras Mieloides/metabolismo , Receptor Toll-Like 9/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Imunidade Inata/genética , Lactoferrina/deficiência , Lactoferrina/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/patologia , Metástase Neoplásica , Transdução de Sinais/genética , Receptor Toll-Like 9/agonistas , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA