Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 83(4): 1059-1072, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34302194

RESUMO

The adaptability of herbivorous insects to toxic plant defense compounds is partly related to the structure of the gut microbiome. To overcome plant resistance, the insect gut microbiome should respond to a wide range of allelochemicals derived from dietary niches. Nevertheless, for sibling herbivorous insect species, whether the gut microbiome contributes to success in food niche competition is unclear. Based on 16S rDNA high-throughput sequencing, the gut microbiomes of two Apriona species that share the same food niche were investigated in this study to determine whether the gut microbiome contributes to insect success in food-niche competition. Our observations indicated that the gut microbiome tended to play a part in host niche competition between the two Apriona species. The gut microbiome of Apriona swainsoni had many enriched pathways that can help degrade plant toxic secondary compounds, including xenobiotic biodegradation and metabolism, terpenoid and polyketide metabolism, and secondary metabolite biosynthesis. Meanwhile, A. swainsoni hosted a much greater variety of microorganisms and had more viable bacteria than A. germari. We conclude that gut microbes may influence the coevolution of herbivores and host plants. Gut bacteria may not only serve to boost nutritional relationships, but may also play an important role in insect food niche competition.


Assuntos
Besouros , Microbioma Gastrointestinal , Animais , Bactérias/genética , Microbioma Gastrointestinal/genética , Insetos , Plantas , RNA Ribossômico 16S/genética
2.
Insects ; 10(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689913

RESUMO

The ectoparasitoid Dastarcus helophoroides Fairmaire (Coleoptera: Bothrideridae) is an important natural enemy insect, which is artificially mass-reared and released into woodland to control medium and large longhorn beetle species. This study examined the developmental duration (days) of larvae and adult fitness (including numbers of adults emerging per host and mean body size) by exposing a single substitute host, a pupa of Zophobas morio (Coleoptera: Tenebrionidae), to different densities of D. helophoroides larvae. We showed that there was no significant effect on the rate of successful parasitism and cocoon formation, but emergence success and measures of individual adult body size (length, width, and weight) declined with increasing larval density. Larval period and cocoon period increased with larval density, while total weight of adults emerging per host increased initially before reaching a plateau. Our results suggest that a pupa of Z. morio could be successfully parasitized by a single D. helophoroides larva, but multiple D. helophoroides larvae can share one host. Excessive larval density caused intraspecific competition among D. helophoroides larvae, manifesting in extended developmental duration of immature stage and reduced fitness of adults. Furthermore, the tradeoff between the numbers of adults and body size may stabilize the population dynamics with detectable mutual interference, particularly in competing for limited host resources. These findings suggest six larvae per host would achieve the highest adult fitness and would enhance mass-rearing techniques as part of IPM strategies for longhorn beetles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA