Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 134(1): 151-162, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38525918

RESUMO

BACKGROUND AND AIMS: Understanding anatomical variations across plant phylogenies and environmental gradients is vital for comprehending plant evolution and adaptation. Previous studies on tropical woody plants have paid limited attention to quantitative differences in major xylem tissues, which serve specific roles in mechanical support (fibres), carbohydrate storage and radial conduction (radial parenchyma, rays), wood capacitance (axial parenchyma) and water transport (vessels). To address this gap, we investigate xylem fractions in 173 tropical tree species spanning 134 genera and 53 families along a 2200-m elevational gradient on Mount Cameroon, West Africa. METHODS: We determined how elevation, stem height and wood density affect interspecific differences in vessel, fibre, and specific axial (AP) and radial (RP) parenchyma fractions. We focus on quantifying distinct subcategories of homogeneous or heterogeneous rays and apotracheal, paratracheal and banded axial parenchyma. KEY RESULTS: Elevation-related cooling correlated with reduced AP fractions and vessel diameters, while fibre fractions increased. Lower elevations exhibited elevated AP fractions due to abundant paratracheal and wide-banded parenchyma in tall trees from coastal and lowland forests. Vasicentric and aliform AP were predominantly associated with greater tree height and wider vessels, which might help cope with high evaporative demands via elastic wood capacitance. In contrast, montane trees featured a higher fibre proportion, scarce axial parenchyma, smaller vessel diameters and higher vessel densities. The lack of AP in montane trees was often compensated for by extended uniseriate ray sections with upright or squared ray cells or the presence of living fibres. CONCLUSIONS: Elevation gradient influenced specific xylem fractions, with lower elevations showing elevated AP due to abundant paratracheal and wide-banded parenchyma, securing greater vessel-to-parenchyma connectivity and lower embolism risk. Montane trees featured a higher fibre proportion and smaller vessel diameters, which may aid survival under greater environmental seasonality and fire risk.


Assuntos
Árvores , Clima Tropical , Madeira , Xilema , Madeira/anatomia & histologia , Madeira/fisiologia , Árvores/anatomia & histologia , Árvores/fisiologia , Xilema/anatomia & histologia , Xilema/fisiologia , Camarões , Altitude
2.
Oecologia ; 204(4): 833-843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573499

RESUMO

Changes in climate and grazing intensity influence plant-community compositions and their functional structure. Yet, little is known about their possible interactive effects when climate change mainly has consequences during the growing season and grazing occurs off growing season (dormant season grazing). We examined the contribution of trait plasticity to the immediate responses in the functional structure of plant community due to the interplay between these two temporally disjunct drivers. We conducted a field experiment in the northern Mongolian steppe, where climate was manipulated by open-top chambers (OTCs) for two growing seasons, increasing temperature and decreasing soil moisture (i.e., increased aridity), and grazing was excluded for one dormant season between these two growing seasons. We calculated the community-weighted mean (CWM) and the functional diversity (FD) of six leaf traits. Based on a variance partitioning approach, we evaluated how much of the responses in CWM and FD to OTCs and dormant season grazing occur through plasticity. The interactive effect of OTCs and the dormant season grazing were detected only after considering the role of trait plasticity. Overall, OTCs influenced the responses in CWM more than in FD, but the effects of OTCs were much less pronounced where dormant season grazing occurred. Thus, warming (together with decreased soil moisture) and the elimination of dormant season grazing could interact to impact the functional trait structure of plant communities through trait plasticity. Climate change effects should be considered in the context of altered land use, even if temporally disjunct.


Assuntos
Mudança Climática , Folhas de Planta , Estações do Ano , Herbivoria , Plantas , Pradaria , Solo
3.
Ecol Lett ; 24(8): 1668-1680, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34128304

RESUMO

Deciphering the effect of neutral and deterministic processes on community assembly is critical to understand and predict diversity patterns. The information held in community trait distributions is commonly assumed as a signature of these processes, but empirical and modelling attempts have most often failed to untangle their confounding, sometimes opposing, impacts. Here, we simulated the assembly of trait distributions through stochastic (dispersal limitation) and/or deterministic scenarios (environmental filtering and niche differentiation). We characterized the shape of trait distributions using the skewness-kurtosis relationship. We identified commonalities in the co-variation between the skewness and the kurtosis of trait distributions with a unique signature for each simulated assembly scenario. Our findings were robust to variation in the composition of regional species pools, dispersal limitation and environmental conditions. While ecological communities can exhibit a high degree of idiosyncrasy, identification of commonalities across multiple communities can help to unveil ecological assembly rules in real-world ecosystems.


Assuntos
Ecossistema , Meio Ambiente , Biodiversidade , Biota , Fenótipo
4.
Glob Chang Biol ; 26(7): 4094-4103, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32320507

RESUMO

Explaining species geographic distributions by macroclimate variables is the most common approach for getting mechanistic insights into large-scale diversity patterns and range shifts. However, species' traits influencing biophysical processes can produce a large decoupling from ambient air temperature, which can seriously undermine biogeographical inference. We combined stable oxygen isotope theory with a trait-based approach to assess leaf temperature during carbon assimilation (TL ) and its departure (ΔT) from daytime free air temperature during the growing season (Tgs ) for 158 plant species occurring from 3,400 to 6,150 m a.s.l. in Western Himalayas. We uncovered a general extent of temperature decoupling in the region. The interspecific variation in ΔT was best explained by the combination of plant height and δ13 C, and leaf dry matter content partly captured the variation in TL . The combination of TL and ΔT, with ΔT contributing most, explained the interspecific difference in elevational distributions. Stable oxygen isotope theory appears promising for investigating how plants perceive temperatures, a pivotal information to species biogeographic distributions.


Assuntos
Carbono , Folhas de Planta , Isótopos de Oxigênio , Estações do Ano , Temperatura
5.
Ann Bot ; 123(4): 569-578, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30541052

RESUMO

BACKGROUND AND AIMS: Alpine cushion plants can initially facilitate other species during ecological succession, but later on can be negatively affected by their development, especially when beneficiaries possess traits allowing them to overrun their host. This can be reinforced by accelerated warming favouring competitively strong species over cold-adapted cushion specialists. However, little empirical research has addressed the trait-based mechanisms of these interactions. The ecological strategies of plants colonizing the cushion plant Thylacospermum caespitosum (Caryophyllaceae), a dominant pioneer of subnival zones, were studied in the Western Himalayas. METHODS: To assess whether the cushion colonizers are phylogenetically and functionally distinct, 1668 vegetation samples were collected, both in open ground outside the cushions and inside their live and dead canopies, in two mountain ranges, Karakoram and Little Tibet. More than 50 plant traits related to growth, biomass allocation and resource acquisition were measured for target species, and the phylogenetic relationships of these species were studied [or determined]. KEY RESULTS: Species-based trait-environment analysis with phylogenetic correction showed that in both mountain ranges Thylacospermum colonizers are phylogenetically diverse but functionally similar and are functionally different from species preferring bare soil outside cushions. Successful colonizers are fast-growing, clonal graminoids and forbs, penetrating the cushion by rhizomes and stolons. They have higher root-to-shoot ratios, leaf nitrogen and phosphorus concentrations, and soil moisture and nutrient demands, sharing the syndrome of competitive species with broad elevation ranges typical of the late stages of primary succession. In contrast, the species from open ground have traits typical of stress-tolerant specialists from high and dry environments. CONCLUSION: Species colonizing tight cushions of T. caespitosum are competitively strong graminoids and herbaceous perennials from alpine grasslands. Since climate change in the Himalayas favours these species, highly specialized subnival cushion plants may face intense competition and a greater risk of decline in the future.


Assuntos
Altitude , Mudança Climática , Características de História de Vida , Magnoliopsida/crescimento & desenvolvimento , Biodiversidade , Biomassa , Caryophyllaceae/crescimento & desenvolvimento , Índia , Especificidade da Espécie
6.
Ann Bot ; 120(1): 29-38, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444363

RESUMO

Background and Aims: The stress gradient hypothesis (SGH), the view that competition prevails in undisturbed and productive environments, and shifts to facilitation in disturbed or stressful environments, has become a central paradigm in ecology. However, an alternative view proposes that the relationship between biotic interactions and environmental severity should be unimodal instead of monotonic. Possible causes of discrepancies between these two views were examined in the high elevation desert of the arid Trans-Himalayas. Methods: A putative nurse species and its associated plant community was surveyed over its entire elevation range, spanning from alpine to desert vegetation belts. The results were analysed at the community level (vegetation cover and species richness), considering the distinction between the intensity and the importance of biotic interactions. Interactions at the species level (pairwise interactions) were also considered, i.e. the variation of biotic interactions within the niche of a species, for which the abundance (species cover) and probability of occurrence (presence/absence) for the most widespread species along the gradient were distinguished. Key Results: Overall, facilitation was infrequent in our study system; however, it was observed for the two most widespread species. At the community level, the intensity and importance of biotic interactions showed a unimodal pattern. The departure from the prediction of the SGH happened abruptly where the nurse species entered the desert vegetation belt at the lowest elevation. This abrupt shift was attributed to the turnover of species with contrasting tolerances. At the species level, however, facilitation increased consistently as the level of stress increases and individuals deviate from their optimum (increasing strain). Conclusion: While the stress gradient hypothesis was not supported along our elevation gradient at the community level, the strain gradient hypothesis, considering how species perceive the ambient level of stress and deviate from their optimum, provided a parsimonious explanation for the outcome of plant-plant interactions at both scales.


Assuntos
Altitude , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico , Clima Desértico , Ecossistema , Plantas
7.
New Phytol ; 206(1): 175-186, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25388949

RESUMO

Alien and native plant species often differ in functional traits. Trait differences could lead to niche differences that minimize competitive interactions and stabilize coexistence. However, trait differences could also translate into average fitness differences, leading to a competitive hierarchy that prevents coexistence. We tested whether trait differences between alien and native species translated into average fitness or stabilizing niche differences, and whether competition could explain observed coexistence within invaded grassland communities (New Zealand). Trait differences reflected marked competitive hierarchy, suggesting average fitness differences. Species coexistence was determined by a trade-off between species susceptibility to herbivory vs competitive hierarchy and facilitation. Importantly, although aliens and natives differed in their trait values, they did not differ in their competitive response, highlighting the importance of equalizing mechanisms in structuring invaded communities. Only a few alien species with a particular set of traits were able to jeopardize species coexistence when grazing was ceased. Our study explains why some alien species coexist with natives, whereas others have strong impacts on native communities. It highlights that trait differences can underlie several coexistence processes and that the demonstration of trait differences between aliens and natives is only a first step to understanding the role of biotic interactions in structuring invaded communities.


Assuntos
Espécies Introduzidas , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Animais , Pradaria , Herbivoria , Modelos Lineares , Modelos Biológicos , Nova Zelândia , Fenótipo , Especificidade da Espécie
8.
Glob Chang Biol ; 21(9): 3489-98, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25828794

RESUMO

Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate-induced biomass responses in 12 co-occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf-trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition.


Assuntos
Biomassa , Mudança Climática , Pradaria , Folhas de Planta/fisiologia , Modelos Biológicos , Mongólia , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Especificidade da Espécie
9.
Oecologia ; 175(1): 251-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24453007

RESUMO

Socio-economic changes threaten nomadic pastoralism across the world, changing traditional grazing patterns. Such land-use changes will co-occur with climate change, and while both are potentially important determinants of future ecosystem functioning, interactions between them remain poorly understood. We investigated the effects of grazing by large herbivores and climate manipulation using open-top chambers (OTCs) on flower number and flowering species richness in mountain steppe of northern Mongolia. In this region, sedentary pastoralism is replacing nomadic pastoralism, and temperature is predicted to increase. Grazing and OTCs interacted to affect forb flowering richness, which was reduced following grazing removal, and reduced by OTCs in grazed plots only. This interaction was directly linked to the soil moisture and temperature environments created by the experimental treatments: most species flowered when both soil moisture and temperature levels were high (i.e. in grazed plots without OTCs), while fewer species flowered when either temperature, or moisture, or both, were low. Removal of grazing increased the average number of graminoid flowers produced at peak flowering in Year 1, but otherwise grazing removal and OTCs did not affect community-level flower composition. Of four abundant graminoid species examined individually, three showed increased flower number with grazing removal, while one showed the reverse. Four abundant forb species showed no significant response to either treatment. Our results highlight how climate change effects on mountain steppe could be contingent on land-use, and that studies designed to understand ecosystem response to climate change should incorporate co-occurring drivers of change, such as altered grazing regimes.


Assuntos
Mudança Climática , Ecossistema , Flores/fisiologia , Herbivoria , Mongólia , Solo , Temperatura
10.
Ecology ; 105(1): e4198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897690

RESUMO

Belowground niche partitioning presents a key mechanism for maintaining species coexistence and diversity. Its importance is currently reinforced by climate change that alters soil hydrological conditions. However, experimental tests examining the magnitude of its change under climate change are scarce. We combined measurements of oxygen stable isotopes to infer plant water-uptake depths and extreme drought manipulation in grasslands. Belowground niche partitioning was evidenced by different water-uptake depths of co-occurring species under ambient and extreme drought conditions despite an increased overlap among species due to a shift to shallower soil layers under drought. A co-occurrence of contrasting strategies related to the change of species water-uptake depth distribution was likely to be key for species to maintain some extent of belowground niche partitioning and could contribute to stabilizing coexistence under drought. Our results suggest that belowground niche partitioning could mitigate negative effects on diversity imposed by extreme drought under future climate.


Assuntos
Secas , Plantas , Solo , Água , Mudança Climática , Pradaria
11.
Ecology ; 94(2): 444-53, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23691663

RESUMO

Predicting the future of any given species represents an unprecedented challenge in light of the many environmental and biological factors that affect organismal performance and that also interact with drivers of global change. In a three-year experiment set in the Mongolian steppe, we examined the response of the common grass Festuca lenensis to manipulated temperature and water while controlling for topographic variation, plant-plant interactions, and ecotypic differentiation. Plant survival and growth responses to a warmer, drier climate varied within the landscape. Response to simulated increased precipitation occurred only in the absence of neighbors, demonstrating that plant-plant interactions can supersede the effects of climate change. F. lenensis also showed evidence of local adaptation in populations that were only 300 m apart. Individuals from the steep and dry upper slope showed a higher stress/drought tolerance, whereas those from the more productive lower slope showed a higher biomass production and a greater ability to cope with competition. Moreover, the response of this species to increased precipitation was ecotype specific, with water addition benefiting only the least stress-tolerant ecotype from the lower slope origin. This multifaceted approach illustrates the importance of placing climate change experiments within a realistic ecological and evolutionary framework. Existing sources of variation impacting plant performance may buffer or obscure climate change effects.


Assuntos
Mudança Climática , Ecossistema , Festuca/classificação , Festuca/crescimento & desenvolvimento , Adaptação Fisiológica , Mongólia , Especificidade da Espécie , Estresse Fisiológico
12.
Ecology ; 104(1): e3851, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054759

RESUMO

The relationship between competition and productivity in plant communities is unclear, and this is likely to be due to (1) a confusion in the literature between productivity and biomass, (2) the lack of studies assessing variation in competition in all combinations of biomass and productivity. We assessed the outcome of plant-plant interactions by removing the neighbors around five focal species in 14 herbaceous communities with contrasting biomasses and productivities: meadows with high biomass and productivity, heathlands with high biomass and low productivity, understory communities of deciduous forests with low biomass and high productivity and calcareous grasslands with low biomass and low productivity. Competition intensity was quantified with the relative interaction index (RII) calculated for both survival and growth of the transplanted targets assessed with the increase in leaf number. To examine which traits better explain variation in competition and what drives variation in diversity, we also quantified litter decomposition rate, species composition and diversity and six morphological traits related to plant size and growth rate for eight dominant species of each community. Our main questions were: (1) Is competition mostly related to biomass or productivity? (2) Which traits of the community dominants better explain variation in competition? (3) Is variation in competition and related traits correlated with variation in diversity? Competition for survival significantly increased with increasing community biomass (but not productivity). In addition, competition for survival increased with the size traits and competitive effects of the dominant species of the communities, whereas diversity decreased. Competition for growth also increased with increasing productivity, but only for high-biomass communities. Additionally, the increase in competition for growth with increasing soil fertility, as measured with litter decomposition rate, was only due to an increase in target growth in plots without neighbors and was unrelated to community competitive effects and species diversity. The results of our study illustrate how the confusion between productivity and biomass could have contributed to the long-standing debate on variation in competition along productivity gradients and its consequence for diversity.


Assuntos
Florestas , Plantas , Biomassa , Solo , Fertilidade , Biodiversidade
13.
Ecology ; 93(4): 815-24, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22690632

RESUMO

The semiarid, northern Mongolian steppe, which still supports pastoral nomads who have used the steppe for millennia, has experienced an average 1.7 degrees C temperature rise over the past 40 years. Continuing climate change is likely to affect flowering phenology and flower numbers with potentially important consequences for plant community composition, ecosystem services, and herder livelihoods. Over the growing seasons of 2009 and 2010, we examined flowering responses to climate manipulation using open-top passive warming chambers (OTCs) at two locations on a south-facing slope: one on the moister, cooler lower slope and the other on the drier, warmer upper slope, where a watering treatment was added in a factorial design with warming. Canonical analysis of principal coordinates (CAP) revealed that OTCs reduced flower production and delayed peak flowering in graminoids as a whole but only affected forbs on the upper slope, where peak flowering was also delayed. OTCs affected flowering phenology in seven of eight species, which were examined individually, either by altering the time of peak flowering and/or the onset and/or cessation of flowering, as revealed by survival analysis. In 2010, which was the drier year, OTCs reduced flower production in two grasses but increased production in an annual forb found only on the upper slope. The particular effects of OTCs on phenology, and whether they caused an extension or contraction of the flowering season, differed among species, and often depended on year, or slope, or watering treatment; however, a relatively strong pattern emerged for 2010 when four species showed a contraction of the flowering season in OTCs. Watering increased flower production in two species in 2010, but slope location more often affected flowering phenology than did watering. Our results show the importance of taking landscape-scale variation into account in climate change studies and also contrasted with those of several studies set in cold, but wetter systems, where warming often causes greater or accelerated flower production. In cold, water-limited systems like the Mongolian steppe, warming may reduce flower numbers or the length of the flowering season by adding to water stress more than it relieves cold stress.


Assuntos
Mudança Climática , Ecossistema , Flores/fisiologia , Mongólia , Plantas/classificação , Estações do Ano
14.
Oecologia ; 169(1): 85-94, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22108852

RESUMO

Topography should create spatial variation in water and nutrients and play an especially important role in the ecology of water-limited systems. We use stable isotopes to discern how plants respond both to ecological gradients associated with elevation and to neighboring legumes on a south-facing slope in the semi-arid, historically grazed steppe of northern Mongolia. Out of three target species, Potentilla acaulis, Potentilla sericea, and Festuca lenensis, when >30 cm from a legume, all showed a decrease in leaf δ(15)N with increasing elevation. This, together with measures of soil δ(15)N, suggests greater N processing at the moister, more productive, lower elevation, and more N fixation at the upper elevation, where cover of legumes and lichens and plant-available nitrate were greater. Total soil N was greater at the lower elevation, but not lichen biomass or root colonization by AMF. Leaf δ(13)C values for P. acaulis and F. lenensis are consistent with increasing water stress with elevation; δ(13)C values indicated the greatest intrinsic water use efficiency for P. sericea, which is more abundant at the upper elevation. Nearby legumes (<10 cm) moderate the effect of elevation on leaf δ(15)N, confirming legumes' meaningful input of N, and affect leaf δ(13)C for two species, suggesting an influence on the efficiency of carbon fixation. Variation in leaf %N and %C as a function of elevation and proximity to a legume differs among species. Apparently, most N input is at upper elevations, pointing to the possible importance of grazers, in addition to hydrological processes, as transporters of N throughout this landscape.


Assuntos
Fabaceae/fisiologia , Carbono/metabolismo , Isótopos de Carbono , Fabaceae/metabolismo , Geografia , Mongólia , Nitrogênio/metabolismo , Fixação de Nitrogênio , Isótopos de Nitrogênio , Folhas de Planta/metabolismo , Solo/química
15.
Ecology ; 103(12): e3826, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857330

RESUMO

Under climate change, extreme droughts will limit water availability for plants. However, the species-specific responses make it difficult to draw general conclusions. We hypothesized that changes in species' abundance in response to extreme drought can be best explained by a set of water economic traits under ambient conditions in combination with the ability to adjust these traits towards higher drought resistance. We conducted a 4-year field experiment in temperate grasslands using rainout shelters with 30% and 50% rainfall reduction. We quantified the response as the change in species abundance between ambient conditions and the rainfall reduction. Abundance response to extreme drought was best explained by a combination of traits in ambient conditions and their functional adjustment, most likely reflecting plasticity. Smaller leaved species decreased less in abundance under drought. With increasing drought intensity, we observed a shift from drought tolerance, i.e., an increase in leaf dry matter content, to avoidance, i.e., a less negative turgor loss point (TLP) in ambient conditions and a constancy in TLP under drought. We stress the importance of using a multidimensional approach of variation in multiple traits and the importance of considering a range of drought intensities to improve predictions of species' response to climate change.


Assuntos
Mudança Climática , Secas , Folhas de Planta/fisiologia , Água
16.
Trends Plant Sci ; 25(4): 329-339, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953170

RESUMO

The study of insular systems has a long history in ecology and biogeography. Island plants often differ remarkably from their noninsular counterparts, constituting excellent models for exploring eco-evolutionary processes. Trait-based approaches can help to answer important questions in island biogeography, yet plant trait patterns on islands remain understudied. We discuss three key hypotheses linking functional ecology to island biogeography: (i) plants in insular systems are characterized by distinct functional trait syndromes (compared with noninsular environments); (ii) these syndromes differ between true islands and terrestrial habitat islands; and (iii) island characteristics influence trait syndromes in a predictable manner. We are convinced that implementing trait-based comparative approaches would considerably further our understanding of plant ecology and evolution in insular systems.


Assuntos
Biodiversidade , Ecologia , Evolução Biológica , Ecossistema , Ilhas , Plantas
18.
Ecol Evol ; 8(11): 5267-5278, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938051

RESUMO

Global climate change is affecting and will continue to affect ecosystems worldwide. Specifically, temperature and precipitation are both expected to shift globally, and their separate and interactive effects will likely affect ecosystems differentially depending on current temperature, precipitation regimes, and other biotic and environmental factors. It is not currently understood how the effects of increasing temperature on plant communities may depend on either precipitation or where communities lie on soil moisture gradients. Such knowledge would play a crucial role in increasing our predictive ability for future effects of climate change in different systems. To this end, we conducted a multi-factor global change experiment at two locations, differing in temperature, moisture, aspect, and plant community composition, on the same slope in the northern Mongolian steppe. The natural differences in temperature and moisture between locations served as a point of comparison for the experimental manipulations of temperature and precipitation. We conducted two separate experiments, one examining the effect of climate manipulation via open-top chambers (OTCs) across the two different slope locations, the other a factorial OTC by watering experiment at one of the two locations. By combining these experiments, we were able to assess how OTCs impact plant productivity and diversity across a natural and manipulated range of soil moisture. We found that warming effects were context dependent, with the greatest negative impacts of warming on diversity in the warmer, drier upper slope location and in the unwatered plots. Our study is an important step in understanding how global change will affect ecosystems across multiple scales and locations.

19.
Nat Ecol Evol ; 1(5): 132, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28812705

RESUMO

Understanding the relationship between biodiversity and ecosystem functioning has been a core ecological research topic over the past decades. Although a key hypothesis is that the diversity of functional traits determines ecosystem functioning, we do not know how much trait diversity is needed to maintain multiple ecosystem functions simultaneously (multifunctionality). Here, we uncovered a scaling relationship between the abundance distribution of two key plant functional traits (specific leaf area, maximum plant height) and multifunctionality in 124 dryland plant communities spread over all continents except Antarctica. For each trait, we found a strong empirical relationship between the skewness and the kurtosis of the trait distributions that cannot be explained by chance. This relationship predicted a strikingly high trait diversity within dryland plant communities, which was associated with a local maximization of multifunctionality. Skewness and kurtosis had a much stronger impact on multifunctionality than other important multifunctionality drivers such as species richness and aridity. The scaling relationship identified here quantifies how much trait diversity is required to maximize multifunctionality locally. Trait distributions can be used to predict the functional consequences of biodiversity loss in terrestrial ecosystems.

20.
Nat Ecol Evol ; 1(5): 0132-132, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28497123

RESUMO

Understanding the relationship between biodiversity and ecosystem functioning has been a core ecological research topic over the last decades. Although a key hypothesis is that the diversity of functional traits determines ecosystem functioning, we do not know how much trait diversity is needed to maintain multiple ecosystem functions simultaneously (multifunctionality). Here, we uncovered a scaling relationship between the abundance distribution of two key plant functional traits (specific leaf area, maximum plant height) and multifunctionality in 124 dryland plant communities spread over all continents except Antarctica. For each trait, we found a strong empirical relationship between the skewness and the kurtosis of the trait distributions that cannot be explained by chance. This relationship predicted a strikingly high trait diversity within dryland plant communities, which was associated with a local maximization of multifunctionality. Skewness and kurtosis had a much stronger impact on multifunctionality than other important multifunctionality drivers such as species richness and aridity. The scaling relationship identified here quantifies how much trait diversity is required to maximize multifunctionality locally. Trait distributions can be used to predict the functional consequences of biodiversity loss in terrestrial ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA