Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell Commun Signal ; 22(1): 245, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671456

RESUMO

BACKGROUND: The alveolar epithelial type II cell (AT2) and its senescence play a pivotal role in alveolar damage and pulmonary fibrosis. Cell circadian rhythm is strongly associated with cell senescence. Differentiated embryonic chondrocyte expressed gene 1 (DEC1) is a very important circadian clock gene. However, the role of DEC1 in AT2 senescence and pulmonary fibrosis was still unclear. RESULTS: In this study, a circadian disruption model of light intervention was used. It was found that circadian disruption exacerbated pulmonary fibrosis in mice. To understand the underlying mechanism, DEC1 levels were investigated. Results showed that DEC1 levels increased in lung tissues of IPF patients and in bleomycin-induced mouse fibrotic lungs. In vitro study revealed that bleomycin and TGF-ß1 increased the expressions of DEC1, collagen-I, and fibronectin in AT2 cells. Inhibition of DEC1 mitigated bleomycin-induced fibrotic changes in vitro and in vivo. After that, cell senescence was observed in bleomycin-treated AT2 cells and mouse models, but these were prevented by DEC1 inhibition. At last, p21 was confirmed having circadian rhythm followed DEC1 in normal conditions. But bleomycin disrupted the circadian rhythm and increased DEC1 which promoted p21 expression, increased p21 mediated AT2 senescence and pulmonary fibrosis. CONCLUSIONS: Taken together, circadian clock protein DEC1 mediated pulmonary fibrosis via p21 and cell senescence in alveolar epithelial type II cells.


Assuntos
Bleomicina , Senescência Celular , Ritmo Circadiano , Fibrose Pulmonar , Animais , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ritmo Circadiano/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Cell Commun Signal ; 21(1): 39, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803515

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) is associated with increased incidence and severity of asthma. PM2.5 exposure disrupts airway epithelial cells, which elicits and sustains PM2.5-induced airway inflammation and remodeling. However, the mechanisms underlying development and exacerbation of PM2.5-induced asthma were still poorly understood. The aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a major circadian clock transcriptional activator that is also extensively expressed in peripheral tissues and plays a crucial role in organ and tissue metabolism. RESULTS: In this study, we found PM2.5 aggravated airway remodeling in mouse chronic asthma, and exacerbated asthma manifestation in mouse acute asthma. Next, low BMAL1 expression was found to be crucial for airway remodeling in PM2.5-challenged asthmatic mice. Subsequently, we confirmed that BMAL1 could bind and promote ubiquitination of p53, which can regulate p53 degradation and block its increase under normal conditions. However, PM2.5-induced BMAL1 inhibition resulted in up-regulation of p53 protein in bronchial epithelial cells, then increased-p53 promoted autophagy. Autophagy in bronchial epithelial cells mediated collagen-I synthesis as well as airway remodeling in asthma. CONCLUSIONS: Taken together, our results suggest that BMAL1/p53-mediated bronchial epithelial cell autophagy contributes to PM2.5-aggravated asthma. This study highlights the functional importance of BMAL1-dependent p53 regulation during asthma, and provides a novel mechanistic insight into the therapeutic mechanisms of BMAL1. Video Abstract.


Assuntos
Fatores de Transcrição ARNTL , Asma , Animais , Camundongos , Remodelação das Vias Aéreas , Fatores de Transcrição ARNTL/metabolismo , Asma/metabolismo , Autofagia , Células Epiteliais/metabolismo , Material Particulado/toxicidade , Material Particulado/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
J Cell Physiol ; 237(1): 566-579, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231213

RESUMO

Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia. It is unknown why fibrosis in IPF distributes in the peripheral or named sub-pleural area. Migration of pleural mesothelial cells (PMC) should contribute to sub-pleural fibrosis. Calpain is known to be involved in cell migration, but the role of calpain in PMC migration has not been investigated. In this study, we found that PMCs migrated into lung parenchyma in patients with IPF. Then using Wt1tm1(EGFP/Cre)Wtp /J knock-in mice, we observed PMC migration into lung parenchyma in bleomycin-induced pleural fibrosis models, and calpain inhibitor attenuated pulmonary fibrosis with prevention of PMC migration. In vitro studies revealed that bleomycin and transforming growth factor-ß1 increased calpain activity in PMCs, and activated calpain-mediated focal adhesion (FA) turnover as well as cell migration, cell proliferation, and collagen-I synthesis. Furthermore, we determined that calpain cleaved FA kinase in both C-terminal and N-terminal regions, which mediated FA turnover. Lastly, the data revealed that activated calpain was also involved in phosphorylation of cofilin-1, and p-cofilin-1 induced PMC migration. Taken together, this study provides evidence that calpain mediates PMC migration into lung parenchyma to promote sub-pleural fibrosis in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Fatores de Despolimerização de Actina/metabolismo , Animais , Bleomicina/farmacologia , Calpaína/metabolismo , Movimento Celular , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Camundongos , Fator de Crescimento Transformador beta1/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L990-L1004, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33787325

RESUMO

The distribution of fibrosis in idiopathic pulmonary fibrosis (IPF) is subpleural with basal predominance. Alveolar epithelial cell was considered as the key cell in the initial phase of IPF. However, the idea of activation and damage of alveolar epithelial cells is very difficult to explain why fibrosis distributes in the subpleural area. In this study, human pleural mesothelial cell (PMC) line and primary rat PMC was used as in vitro model. Intraperitoneal injection of bleomycin was used for making a pulmonary fibrosis model. The integrity of cultured monolayer PMCs was determined by transepithelial electric resistance (TEER). Pleural permeability was estimated by measuring paracellular transport of fluorescein isothiocyanate (FITC)-conjugated dextran. Changes in lung tissue of patients with IPF were analyzed by Masson's and immunofluorescence staining. We found bleomycin induced PMCs damage and increased PMCs permeability; increased PMCs permeability aggravated bleomycin-induced subpleural inflammation and pulmonary fibrosis. Moreover, bleomycin was found to activate VEGF/Src signaling which increased PMCs permeability. In vivo, inhibition of VEGF/Src signaling prevented bleomycin-induced subpleural pulmonary fibrosis. At last, activation of VEGF/Src signaling was confirmed in subpleural area in patients with IPF. Taken together, our findings indicate that VEGF/Src signaling mediated pleural barrier damage and increased permeability which contributes to subpleural pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/patologia , Permeabilidade/efeitos dos fármacos , Pleura/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/patologia , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pleura/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
5.
Exp Cell Res ; 396(1): 112295, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971116

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal fibrosing interstitial lung disease with limited therapeutic options and a median survival of 3 years after diagnosis. Dysregulated epithelial regeneration is key event involved in initiating and sustaining IPF. The type II alveolar epithelial cells (AECIIs) play a crucial role for epithelial regeneration and stabilisation of alveoli. Loss of cell apical-basal polarity contributes to fibrosis. AECII has apical-basal polarity, but it is poorly understood whether AECII apical-basal polarity loss is involved in fibrosis. Bleomycin is a traditional inducer of pulmonary fibrosis. Here firstly we observed that bleomycin induced apical-basal polarity loss in cultured AECIIs. Next, cell polarity proteins lethal (2) giant larvae 1 (Lgl1), PAR-3A, aPKC and PAR-6B were investigated. We found bleomycin induced increases of Lgl1 protein and decreases of PAR-3A protein, and bleomycin-induced PAR-3A depression was mediated by increased-Lgl1. Then Lgl1 siRNA was transfected into AECIIs. Lgl1 siRNA prevented apical-basal polarity loss in bleomycin-treated AECIIs. At last, Lgl1-conditional knockout mice were applied in making animal models. Bleomycin induced pulmonary fibrosis, but this was attenuated in Lgl1-conditional knockout mice. Together, these data indicated that bleomycin mediated AECII apical-basal polarity loss which contributed to experimental pulmonary fibrosis. Inhibition of Lgl1 should be a potential therapeutic strategy for the disease.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Bleomicina/farmacologia , Polaridade Celular/efeitos dos fármacos , Glicoproteínas/genética , Fibrose Pulmonar/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Polaridade Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Knockout , Cultura Primária de Células , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fibrose Pulmonar/prevenção & controle , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais
6.
Eur Respir J ; 55(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32366488

RESUMO

BACKGROUND: The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), infected over 3300 healthcare workers in early 2020 in China. Little information is known about nosocomial infections of healthcare workers in the initial period. We analysed data from healthcare workers with nosocomial infections in Wuhan Union Hospital (Wuhan, China) and their family members. METHODS: We collected and analysed data on exposure history, illness timelines and epidemiological characteristics from 25 healthcare workers with laboratory-confirmed coronavirus disease 2019 (COVID-19) and two healthcare workers in whom COVID-19 was highly suspected, as well as 10 of their family members with COVID-19, between 5 January and 12 February 2020. The demographics and clinical features of the 35 laboratory-confirmed cases were investigated and viral RNA of 12 cases was sequenced and analysed. RESULTS: Nine clusters were found among the patients. All patients showed mild to moderate clinical manifestation and recovered without deterioration. The mean period of incubation was 4.5 days, the mean±sd clinical onset serial interval (COSI) was 5.2±3.2 days, and the median virus shedding time was 18.5 days. Complete genomic sequences of 12 different coronavirus strains demonstrated that the viral structure, with small irrelevant mutations, was stable in the transmission chains and showed remarkable traits of infectious traceability. CONCLUSIONS: SARS-CoV-2 can be rapidly transmitted from person to person, regardless of whether they have symptoms, in both hospital settings and social activities, based on the short period of incubation and COSI. The public health service should take practical measures to curb the spread, including isolation of cases, tracing close contacts, and containment of severe epidemic areas. Besides this, healthcare workers should be alert during the epidemic and self-quarantine if self-suspected of infection.


Assuntos
Infecções por Coronavirus/epidemiologia , Surtos de Doenças , Família , Pessoal de Saúde , Transmissão de Doença Infecciosa do Paciente para o Profissional/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus/genética , COVID-19 , China/epidemiologia , Infecções por Coronavirus/transmissão , Feminino , Hospitais , Humanos , Período de Incubação de Doenças Infecciosas , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/transmissão , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Eliminação de Partículas Virais , Sequenciamento Completo do Genoma
7.
J Korean Med Sci ; 35(47): e418, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33289374

RESUMO

BACKGROUND: Most patients including health care workers (HCWs) survived the coronavirus disease 2019 (COVID-19), however, knowledge about the sequelae of COVID-19 after discharge remains limited. METHODS: A prospectively observational 3-month follow-up study evaluated symptoms, dynamic changes of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) IgG and IgM, lung function, and high resolution computed tomography (HRCT) of survivors of COVID-19 after discharge at Wuhan Union Hospital, China. RESULTS: Seventy-six survivors (55 females) with a mean age of 41.3 ± 13.8 years were enrolled, and 65 (86%) were HCWs. A total of 69 (91%) patients had returned to their original work at 3-months after discharge. Most of the survivors had symptoms including fever, sputum production, fatigue, diarrhea, dyspnea, cough, chest tightness on exertion and palpitations in the three months after discharge. The serum troponin-I levels during the acute illness showed high correlation with the symptom of fatigue after hospital discharge (r = 0.782; P = 0.008) and lymphopenia was correlated with the symptoms of chest tightness and palpitations on exertion of patients after hospital discharge (r = -.285, P = 0.027; r = -.363, P = 0.004, respectively). The mean values of forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), FEV1/FVC, total lung capacity and diffusion capacity were all normal (> 80% predicted) and lung HRCTs returned to normal in most of the patients (82%), however, 42% of survivors had mild pulmonary function abnormalities at 3-months after discharge. SARS-CoV-2 IgG turned negative in 11% (6 of 57 patients), 8% (4 of 52 patients) and 13% (7 of 55 patients), and SARS-CoV-2 IgM turned negative in 72% (41 of 57 patients), 85% (44 of 52 patients) and 87% (48 of 55 patients) at 1-month, 2-months and 3-months after discharge, respectively. CONCLUSION: Infection by SARS-CoV-2 caused some mild impairments of survivors within the first three months of their discharge and the duration of SARS-CoV-2 antibody was limited, which indicates the necessity of long-term follow-up of survivors of COVID-19.


Assuntos
COVID-19/patologia , Pulmão/fisiologia , Adulto , Idoso , Anticorpos Antivirais/sangue , COVID-19/virologia , Feminino , Seguimentos , Volume Expiratório Forçado , Humanos , Pulmão/diagnóstico por imagem , Linfopenia/diagnóstico , Masculino , Pessoa de Meia-Idade , Alta do Paciente , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Sobreviventes , Fatores de Tempo , Tomografia Computadorizada por Raios X , Troponina I/sangue , Capacidade Vital , Adulto Jovem
8.
Sensors (Basel) ; 19(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288478

RESUMO

Sensor fault detection and diagnosis (FDD) has great significance for ensuring the energy saving and normal operation of the air conditioning system. Chiller systems serving as an important part of central air conditioning systems are the major energy consumer in commercial and industrial buildings. In order to ensure the normal operation of the chiller system, virtual sensors have been proposed to detect and diagnose sensor faults. However, the performance of virtual sensors could be easily impacted by abnormal data. To solve this problem, virtual sensors combined with the maximal information coefficient (MIC) and a long short-term memory (LSTM) network is proposed for chiller sensor fault diagnosis. Firstly, MIC, which has the ability to quantify the degree of relevance in a data set, is applied to examine all potentially interesting relationships between sensors. Subsequently, sensors with high correlation are divided into several groups by the grouping thresholds. Two virtual sensors, which are constructed in each group by LSTM with different input sensors and corresponding to the same physical sensor, could have the ability to predict the value of physical sensors. High correlation sensors in each group improve the fitting effect of virtual sensors. Finally, sensor faults can be diagnosed by the absolute deviation which is generated by comparing the virtual sensors' output with the actual value measured from the air-cooled chiller. The performance of the proposed method is evaluated by using a real data set. Experimental results indicate that virtual sensors can be well constructed and the proposed method achieves a significant performance along with a low false alarm rate.

9.
Molecules ; 24(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857175

RESUMO

Functional carbon materials have been developed and applied in various sewage treatment applications in recent years. This article reports the fabrication, characterization, and application of a new kind of poly (allylthiourea-co-acrylic acid) (PAT⁻PAC) hydrogel-based carbon monolith. The results indicated that the poly acrylic acid component can endow the PAT⁻PAC hydrogel with an increased swelling ratio and enhanced thermal stability. During the carbonization process, O⁻H, N⁻H, C=N, and ⁻COO⁻ groups, etc. were found to be partly decomposed, leading to the conjugated C=C double bonds produced and the clear red shift of C=O bonds. Particularly, it was found that this shift was accelerated under higher carbonization temperature, which ultimately resulted in the complex conjugated C=C network with oxygen, nitrogen, and sulfur atoms doped in-situ. The as-obtained carbon monoliths showed good removal capacity for Ni(II) ions, organic solvents, and dyes, respectively. Further analysis indicated that the Ni(II) ion adsorption process could be well described by pseudo-second-order and Freundlich models under our experimental conditions, respectively. The adsorption capacity for Ni(II) ions and paraffin oil was as high as 557 mg/g and 1.75 g/g, respectively. More importantly, the as-obtained carbon monoliths can be recycled and reused for Ni(II) ions, acetone, and paraffin oil removal. In conclusion, the proposed PAT⁻PAC-based carbonaceous monoliths are superior adsorbents for wastewater treatment.


Assuntos
Acrilatos/química , Carbono/química , Polímeros/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Adsorção , Tioureia/análogos & derivados , Tioureia/química , Purificação da Água/métodos
10.
ISA Trans ; 148: 182-190, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548503

RESUMO

In this paper we focus on the distributed cyber attack detection and physical fault diagnosis problem for a class of interconnected large-scale systems (ILSSs). In the proposed scheme, apart from node measurement, edge measurement is also used to construct distributed Kalman filter to estimate the state of each subsystem. The gain matrices of Kalman filter are determined by minimizing the covariance of estimation error in the attack-free and fault-free case, which reduces the false alarm rate of cyber attack detection and physical fault diagnosis. Based on this filter, a bank of adjacent residual generators is constructed to characterize the influence of cyber attack on the edge measurement, and the Chi-square test is used to detect whether the received edge measurements are attacked. At the same time, a local residual generator is constructed for each subsystem to characterize the influence of physical faults on it, and the residual signal is evaluated by variance and directional residual, so as to make distributed fault detection and isolation of each subsystem. It is worth noting that at each step, each subsystem first performs attack detection on the received edge measurements, and then estimates its own state using the attack-free edge measurements and node measurement, which further improves the accuracy of fault detection and isolation. In addition, a sufficient condition that ensuring the mean square exponential boundedness of the estimation error is given. Finally, the proposed scheme is verified by an illustrative example.

11.
Environ Pollut ; 347: 123674, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458517

RESUMO

Fine particulate matter (PM2.5) has been linked to increased severity and incidence of airway diseases, especially chronic obstructive pulmonary disease (COPD) and asthma. Airway remodeling is an important event in both COPD and asthma, and airway smooth muscle cells (ASMCs) are key cells which directly involved in airway remodeling. However, it was unclear how PM2.5 affected ASMCs. This study investigates the effects of PM2.5 on airway smooth muscle and its mechanism. We first showed that inhaled particulate matter was distributed in the airway smooth muscle bundle, combined with increased airway smooth muscle bundle and collagen deposition in vivo. Then, we demonstrated that PM2.5 induced up-regulation of collagen-I and alpha-smooth muscle actin (α-SMA) expression in rat and human ASMCs in vitro. Next, we found PM2.5 led to rat and human ASMCs senescence and exhibited senescence-associated secretory phenotype (SASP) by autophagy-induced GATA4/TRAF6/NF-κB signaling, which contributed to collagen-I and α-SMA synthesis as well as airway smooth muscle remodeling. Together, our results provided evidence that SASP induced by PM2.5 in airway smooth muscle cells prompted airway remodeling.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Ratos , Animais , Remodelação das Vias Aéreas , Fenótipo Secretor Associado à Senescência , Miócitos de Músculo Liso , Asma/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Colágeno Tipo I , Proliferação de Células , Material Particulado/metabolismo , Células Cultivadas
12.
Tohoku J Exp Med ; 230(4): 219-25, 2013 08.
Artigo em Inglês | MEDLINE | ID: mdl-23924960

RESUMO

Langerhans cell histiocytosis (LCH) is characterized by uncontrolled proliferation of Langerhans cells accompanying eosinophils. It often attacks children under 10 years of age. LCH in identical twins is very rare and its prognosis is different. Here we report identical-twin sisters with LCH. Computed tomography (CT) revealed osteolytic change in each twin's skull, and the elder exhibited poor eyesight. There were massive histiocyte-like cells surrounded by eosinophils in pathologic specimen of the abnormal lesions, which is typical pathologic finding in LCH. These pathologic cells were positive for S-100 and the cell surface protein CD1 antigen (CD1α), the known markers of LCH. After treating them with surgery, no symptoms were seen in the younger until now. While the older was found another soft mass (about 2.0 cm in diameter) in the left temporal area 18 months later. The same treatment was given to the older after admission, and she is healthy to date. To explore the relationship between hallmarks and the prognosis of identical-twin patients with LCH, we retrieved the 16 literatures (16 identical-twin pairs, 31 patients) listed in PubMed during the past 60 years. The data revealed all those patients who have disseminated to the bone marrow, spleen and liver with symptoms of fever and hepatosplenomegaly exhibited worse prognosis (9 out of the 31 patients). The other identical-twin subjects without infiltration of those organs recovered well. In conclusion, this study reveals the adverse hallmarks of prognosis in identical-twin patients with LCH by reviewing relevant literatures.


Assuntos
Doenças em Gêmeos/diagnóstico , Histiocitose de Células de Langerhans/diagnóstico , Gêmeos Monozigóticos , Doenças Ósseas/diagnóstico , Doenças Ósseas/etiologia , Doenças Ósseas/cirurgia , Doenças em Gêmeos/cirurgia , Oftalmopatias/diagnóstico , Oftalmopatias/etiologia , Oftalmopatias/cirurgia , Feminino , Histiocitose de Células de Langerhans/cirurgia , Humanos , Lactente , Prognóstico , Crânio
13.
ISA Trans ; 129(Pt A): 69-78, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35078623

RESUMO

In this paper, we present a multi-agent based optimal event-triggered distributed cooperative fault detection scheme. First, for each agent, the event-triggered mechanism is used to determine whether the current measurements are transmitted to the corresponding neighbor agents, addressing the design of the cooperative estimator. Then, considering the effects of external bounded disturbances and additional faults as well as transmission errors caused by event triggering, a residual generator is proposed, which achieves the optimal tradeoff between robustness to external bounded disturbances and faults sensitivity. Meanwhile, by taking into account the effects of external disturbances and information loss caused by event triggering on the residual, a residual evaluator is designed to provide the corresponding time-varying threshold. Finally, an illustrative example is given to illustrate the effectiveness of the proposed scheme.

14.
Carbohydr Polym ; 295: 119843, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988976

RESUMO

Although sodium alginate possesses excellent biocompatibility, moisture retention and easy availability, it cannot be directly applied for infected wound treatment. Herein, a solid phase synthesis strategy was proposed to fabricate oxidized sodium alginate-tobramycin conjugate (OSA-TOB) for anti-infection dressing development. 13C nuclear magnetic resonance spectra indicated that the oxidization process does not change the ratio of ß-D-mannuronic acid (M) / α-L-guluronic acid (G) in OSA and the oxidization reaction shows no stereoselectivity. Elemental analysis disclosed that the graft ratio of tobramycin in OSA-TOB is 13.8 %. Antibacterial test indicated that OSA-TOB can effectively inhibit four prevalent pathogenic bacterial S.epidermidis, P. aeruginosa, S. aureus and E. coli via a different antibacterial mechanism compared to the original TOB. Hemolysis and cytotoxicity assays shown that OSA-TOB have superior hemocompatibility and cytocompatibility. Infected wound healing assay shown that the healing rate of OSA-TOB is the highest. Further analysis indicated that OSA-TOB can reduce the local inflammatory response, accelerate the form of epithelium and collagen deposition. In conclusions, OSA-TOB synthesized in solid phase can be potentially applied as a promising anti-infection wound dressing.


Assuntos
Anti-Infecciosos , Infecção dos Ferimentos , Humanos , Alginatos/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Pseudomonas aeruginosa , Técnicas de Síntese em Fase Sólida , Staphylococcus aureus , Tobramicina/farmacologia , Cicatrização , Infecção dos Ferimentos/microbiologia
15.
Theranostics ; 12(10): 4513-4535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832075

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic disease with high mortality. Currently, pirfenidone and nintedanib are the only approved drugs for IPF by the U.S. Food and Drug Administration (FDA), but their efficacy is limited. The activation of multiple phosphotyrosine (pY) mediated signaling pathways underlying the pathological mechanism of IPF has been explored. A Src homology-2 (SH2) superbinder, which contains mutations of three amino acids (AAs) of natural SH2 domain has been shown to be able to block phosphotyrosine (pY) pathway. Therefore, we aimed to introduce SH2 superbinder into the treatment of IPF. Methods: We analyzed the database of IPF patients and examined pY levels in lung tissues from IPF patients. In primary lung fibroblasts obtained from IPF patient as well as bleomycin (BLM) treated mice, the cell proliferation, migration and differentiation associated with pY were investigated and the anti-fibrotic effect of SH2 superbinder was also tested. In vivo, we further verified the safety and effectiveness of SH2 superbinder in multiple BLM mice models. We also compared the anti-fibrotic effect and side-effect of SH2 superbinder and nintedanib in vivo. Results: The data showed that the cytokines and growth factors pathways which directly correlated to pY levels were significantly enriched in IPF. High pY levels were found to induce abnormal proliferation, migration and differentiation of lung fibroblasts. SH2 superbinder blocked pY-mediated signaling pathways and suppress pulmonary fibrosis by targeting high pY levels in fibroblasts. SH2 superbinder had better therapeutic effect and less side-effect compare to nintedanib in vivo. Conclusions: SH2 superbinder had significant anti-fibrotic effects both in vitro and in vivo, which could be used as a promising therapy for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Bleomicina/farmacologia , Proliferação de Células , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Camundongos , Fosfotirosina/química , Fosfotirosina/metabolismo , Fosfotirosina/farmacologia
16.
Sci Rep ; 11(1): 11754, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083660

RESUMO

Recent researches have provided evidence that stimulus-driven attentional bias for threats can be modulated by top-down goals. However, it is highlight essential to indicate whether and to what extent the top-down goals can affect the early stage of attention processing and its early neural mechanism. In this study, we collected electroencephalographic data from 28 healthy volunteers with a modified spatial cueing task. The results revealed that in the irrelevant task, there was no significant difference between the reaction time (RT) of the fearful and neutral faces. In the relevant task, we found that RT of fearful faces was faster than that of neutral faces in the valid cue condition, whereas the RT of fearful faces was slower than that of neutral faces in the invalid cue condition. The N170 component in our study showed a similar result compared with RT. Specifically, we noted that in the relevant task, fearful faces in the cue position of the target evoked a larger N170 amplitude than neutral faces, whereas this effect was suppressed in the irrelevant task. These results suggest that the irrelevant task may inhibit the early attention allocation to the fearful faces. Furthermore, the top-down goals can modulate the early attentional bias for threatening facial expressions.


Assuntos
Atenção , Potenciais Evocados , Expressão Facial , Medo , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico , Sinais (Psicologia) , Eletroencefalografia , Emoções , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Tempo de Reação , Adulto Jovem
17.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33905374

RESUMO

Pleural fibrosis is defined as an excessive deposition of extracellular matrix that results in destruction of the normal pleural tissue architecture and compromised function. Tuberculous pleurisy, asbestos injury, and rheumatoid pleurisy are main causes of pleural fibrosis. Pleural mesothelial cells (PMCs) play a key role in pleural fibrosis. However, detailed mechanisms are poorly understood. Serine/arginine-rich protein SRSF6 belongs to a family of highly conserved RNA-binding splicing-factor proteins. Based on its known functions, SRSF6 should be expected to play a role in fibrotic diseases. However, the role of SRSF6 in pleural fibrosis remains unknown. In this study, SRSF6 protein was found to be increased in cells of tuberculous pleural effusions (TBPE) from patients, and decellularized TBPE, bleomycin, and TGF-ß1 were confirmed to increase SRSF6 levels in PMCs. In vitro, SRSF6 mediated PMC proliferation and synthesis of the main fibrotic protein COL1A2. In vivo, SRSF6 inhibition prevented mouse experimental pleural fibrosis. Finally, activated SMAD2/3, increased SOX4, and depressed miRNA-506-3p were associated with SRSF6 upregulation in PMCs. These observations support a model in which SRSF6 induces pleural fibrosis through a cluster pathway, including SRSF6/WNT5A and SRSF6/SMAD1/5/9 signaling. In conclusion, we propose inhibition of the splicing factor SRSF6 as a strategy for treatment of pleural fibrosis.


Assuntos
Fibrose/metabolismo , Fosfoproteínas , Pleura/metabolismo , Doenças Pleurais/metabolismo , Fatores de Processamento de Serina-Arginina , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Transdução de Sinais
18.
J Hypertens ; 38(8): 1481-1487, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32149930

RESUMO

OBJECTIVES: Polymorphisms in microRNA genes are related to the risk of ischemic stroke, but the association between miR-34b/c polymorphisms and the risk of ischemic stroke has not been reported. METHODS: MiR-34b/c rs2187473 and rs4938723 polymorphisms were genotyped by Snapshot assay among 495 controls and 492 ischemic stroke patients. Expression levels of miR-34b and miR-34c were quantified by real-time PCR. Transcriptional activity of miR-34b/c promoter was measured by luciferase reporter assay. RESULTS: Rs4938723 was associated with an increased risk of ischemic stroke in our study (CC versus TT: OR = 2.34, 95% CI = 1.47-3.72, P = 0.001; C versus T: OR = 1.37, 95% CI = 1.12-1.68, P = 0.002; CC versus TT + TC: OR = 2.12, 95% CI = 1.37-3.29, P = 0.001). The expression levels of miR-34b and miR-34c were significantly downregulated in cases by contrast with controls (P < 0.05). Further analysis demonstrated that the expression levels of miR-34b and miR-34c were also downregulated in the individuals carrying rs4938723 CC genotype by contrast with that carrying TT + TC genotypes (P < 0.05). The result of luciferase reporter assay showed that rs4938723C allele decreased the transcriptional activity of miR-34b/c promoter compared with rs4938723 T allele. CONCLUSION: Our study showed a positive relation between the miR-34b/c rs4938723 polymorphism and the risk of ischemic stroke, which indicated that rs4938723 may be used for ischemic stroke prediction or therapy in the future.


Assuntos
AVC Isquêmico , MicroRNAs/genética , Polimorfismo Genético/genética , Predisposição Genética para Doença , Humanos , AVC Isquêmico/epidemiologia , AVC Isquêmico/genética , Fatores de Risco
19.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118806, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32739525

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic, progressive and fibrosing interstitial pneumonia of unknown cause. The main feature of IPF is a heterogeneous appearance with areas of sub-pleural fibrosis. However, the mechanism of sub-pleural fibrosis was poorly understood. In this study, our in vivo study revealed that pleural mesothelial cells (PMCs) migrated into lung parenchyma and localized alongside lung fibroblasts in sub-pleural area in mouse pulmonary fibrosis. Our in vitro study displayed that cultured-PMCs-medium induced lung fibroblasts transforming into myofibroblast, cultured-fibroblasts-medium promoted mesothelial-mesenchymal transition of PMCs. Furthermore, these changes in lung fibroblasts and PMCs were prevented by blocking TGF-ß1/Smad2/3 signaling with SB431542. TGF-ß1 neutralized antibody attenuated bleomycin-induced pulmonary fibrosis. Similar to TGF-ß1/Smad2/3 signaling, wnt/ß-catenin signaling was also activated in the process of PMCs crosstalk with lung fibroblasts. Moreover, inhibition of CD147 attenuated cultured-PMCs-medium induced collagen-I synthesis in lung fibroblasts. Blocking CD147 signaling also prevented bleomycin-induced pulmonary fibrosis. Our data indicated that crosstalk between PMC and lung fibroblast contributed to sub-pleural pulmonary fibrosis. TGF-ß1, Wnt/ß-catenin and CD147 signaling was involved in the underling mechanism.


Assuntos
Epitélio/efeitos dos fármacos , Pulmão/metabolismo , Pleura/efeitos dos fármacos , Fibrose Pulmonar/genética , Animais , Benzamidas/farmacologia , Movimento Celular/genética , Dioxóis/farmacologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Epitélio/patologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Pleura/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Fator de Crescimento Transformador beta1/genética
20.
Int J Biol Macromol ; 139: 719-729, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31356953

RESUMO

Despite superior hemostasis and repair function, tilapia peptide's application as wounding dressing is greatly limited due to its poor biostability. To expand its application in wounding dressing area, chitosan (CS), with antibacterial activity, biocompatibility and biodegradability, was used to encapsulate tilapia peptides using ionic crosslink method. The results show 10.6w% (loading capacity) of the tilapia peptides are homogenously dispersed in surface or interior of the as-fabricated chitosan/tilapia peptides microspheres (CS/TPM), which leads to greatly improved biostability. In addition, a new composite sponge using CS/TPM as fillers and CS as matrix was then constructed (S-CS/TPM) and used for hemorrhage control. The results indicate that S-CS/TPM can absorb large volume of water, accelerate blood clotting, increase platelet adhesion and promote conversion of fibrinogen to fibrin. Compared with the CS andCS/TPM, the hemostatic efficiency of S-CS/TPM in New Zealand rabbit ear and femoral artery models is much higher. Particularly, the bleeding time was shortened greatly, and the bleeding volume was reduced significantly. In conclusions, our results suggested that S-CS/TPM is a promising hemostatic adjuvant.


Assuntos
Hemostasia/efeitos dos fármacos , Hemostáticos/farmacologia , Peptídeos/química , Tilápia/metabolismo , Adsorção , Animais , Antibacterianos/química , Bandagens , Materiais Biocompatíveis , Coagulação Sanguínea , Quitosana/química , Reagentes de Ligações Cruzadas/química , Escherichia coli , Feminino , Hemoglobinas/química , Hemorragia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Microesferas , Adesividade Plaquetária , Porosidade , Coelhos , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA