Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 15: 89, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25848687

RESUMO

BACKGROUND: Polyploidy has often been considered to confer plants a better adaptation to environmental stresses. Tetraploid citrus rootstocks are expected to have stronger stress tolerance than diploid. Plenty of doubled diploid citrus plants were exploited from diploid species for citrus rootstock improvement. However, limited metabolic and molecular information related to tetraploidization is currently available at a systemic biological level. This study aimed to evaluate the occurrence and extent of metabolic and transcriptional changes induced by tetraploidization in Ziyang xiangcheng (Citrus junos Sieb. ex Tanaka), which is a special citrus germplasm native to China and widely used as an iron deficiency tolerant citrus rootstock. RESULTS: Doubled diploid Ziyang xiangcheng has typical morphological and anatomical features such as shorter plant height, larger and thicker leaves, bigger stomata and lower stomatal density, compared to its diploid parent. GC-MS (Gas chromatography coupled to mass spectrometry) analysis revealed that tetraploidization has an activation effect on the accumulation of primary metabolites in leaves; many stress-related metabolites such as sucrose, proline and γ-aminobutyric acid (GABA) was remarkably up-regulated in doubled diploid. However, LC-QTOF-MS (Liquid chromatography quadrupole time-of-flight mass spectrometry) analysis demonstrated that tetraploidization has an inhibition effect on the accumulation of secondary metabolites in leaves; all the 33 flavones were down-regulated while all the 6 flavanones were up-regulated in 4x. By RNA-seq analysis, only 212 genes (0.8% of detected genes) are found significantly differentially expressed between 2x and 4x leaves. Notably, those genes were highly related to stress-response functions, including responses to salt stress, water and abscisic acid. Interestingly, the transcriptional divergence could not explain the metabolic changes, probably due to post-transcriptional regulation. CONCLUSION: Taken together, tetraploidization induced considerable changes in leaf primary and secondary metabolite accumulation in Ziyang xiangcheng. However, the effect of tetraploidization on transcriptome is limited. Compared to diploid, higher expression level of stress related genes and higher content of stress related metabolites in doubled diploid could be beneficial for its stress tolerance.


Assuntos
Citrus/genética , Citrus/metabolismo , Diploide , Metaboloma/genética , Estresse Fisiológico/genética , Transcrição Gênica , Cromatografia Líquida , Cruzamentos Genéticos , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Metabolômica , Folhas de Planta/metabolismo , Análise de Componente Principal , Metabolismo Secundário , Tetraploidia , Transcriptoma/genética , Regulação para Cima/genética
2.
Plant Cell Rep ; 33(10): 1641-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24972825

RESUMO

KEY MESSAGE: 2 n megagametophyte formation plays an important role in polyploidization in polyembryonic citrus and is valuable for plant improvement. Tetraploid plants are frequently observed in the seedlings of diploid polyembryonic citrus genotypes. However, the mechanisms underlying the formation of tetraploids are still indistinct when apomictic citrus genotypes are used as female parent to cross with tetraploids. Herein, 54 tetraploid progenies, which were unexpectedly obtained previously from four 2x × 4x crosses using polyembryonic 'Nadorcott' tangor as seed parent, were analyzed by 22 simple sequence repeat (SSR) markers, aiming to reveal their genetic origin and the mechanism underlying 2n megagametophyte formation. The results showed that 13 tetraploids from all these four crosses were doubled diploids as indicated by their identical SSR allelic profile with their female parent; while the remaining 41 tetraploids apparently exhibited paternally derived alleles, which confirmed their zygotic origin. Furthermore, the genotyping of all hybrids indicated that all of them arose from 2n megagametophytes. Based on the genotypes of 2n megagametophytes, the analysis of maternal heterozygosity restitution (HR) for each marker showed that it varied from 0.00 to 87.80 % with a mean value of 40.89 %. In addition, it was observed that 13 markers displayed a lower rate than 50 %. On the basis of the above results, it can be speculated that the second division restitution (SDR) is the mechanism underlying the 2n megagametophyte formation in 'Nadorcott' tangor. The elucidation of the mechanism of 2n megagametophyte formation will be of great help to optimize further sexual hybridization for polyploids in citrus.


Assuntos
Citrus/genética , Tetraploidia , Diploide , Genótipo , Plântula/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA