Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Environ Sci Technol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058552

RESUMO

The impact of water on catalyst activity remains inconclusive due to its dependence on the specific reaction environment. To maximize the exploitation of water's promoting effect, we employed ammonia selective catalytic reduction (NH3-SCR) as a probe reaction and proposed a phosphorus modification strategy for Cu-ZSM-5 catalysts. The objective of this approach was to construct water-adaptive microstructures through directional arrangement. To investigate the effect of phosphorus on the transformation of framework copper sites in humid environments, we conducted comprehensive characterizations and density functional theory calculation. Results reveal that water molecules cleave the oxygen bridges between phosphorus oxide and copper, leading to the formation of active isolated [Cu(OH)]+ groups and phosphate. The phosphate species weaken the interaction between exchanged Cu2+ groups and the zeolite framework, leading to the generation of highly migratory hydrated Cu2+ species. This work will potentially guide the rational design of water-adaptive catalysts for gas pollution abatement in a humid environment.

2.
Small ; 19(52): e2304014, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653616

RESUMO

Bacterial therapy is an emerging hotspot in tumor immunotherapy, which can initiate antitumor immune activation through multiple mechanisms. Porphyromonas gingivalis (Pg), a pathogenic bacterium inhabiting the oral cavity, contains a great deal of pathogen associated molecular patterns that can activate various innate immune cells to promote antitumor immunity. Owing to the presence of protoporphyrin IX (PpIX), Pg is also an excellent photosensitizer for photodynamic therapy (PDT) via the in situ generation of reactive oxygen species. This study reports a bacterial nanomedicine (nmPg) fabricated from Pg through lysozyme degradation, ammonium chloride lysis, and nanoextrusion, which has potent PDT and immune activation performances for oral squamous cell carcinoma (OSCC) treatment. To further promote the tumoricidal efficacy, a commonly used chemotherapeutic drug doxorubicin (DOX) is efficiently encapsulated into nmPg through a simple incubation method. nmPg/DOX thus prepared exhibits significant synergistic effects on inhibiting the growth and metastasis of OSCC both in vitro and in vivo via photodynamic-immunotherapy and chemotherapy. In summary, this work develops a promising bacterial nanomedicine for enhanced treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Fotoquimioterapia , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Fotoquimioterapia/métodos , Nanomedicina , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral
3.
Inorg Chem ; 62(30): 12050-12057, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37463109

RESUMO

Narrowband ultraviolet-B (NB-UVB) luminescent materials are characterized by high photon energy, narrow spectral width, and visible-blind emission, thus holding great promise for photochemistry and photomedicine. However, most NB-UVB phosphors developed so far are photoluminescent, where continuous external excitation is needed. Herein, we realize NB-UVB persistent luminescence (PersL) in an indoor-lighting environment by exploiting the interaction between self-trapped/defect-trapped excitons and Gd3+ emitters in ScPO4. The phosphor shows a self-luminescing feature with a peak maximum at 313 nm with a time duration of >24 h after ceasing X-ray irradiation, which can be clearly imaged by an UVB camera in a bright environment. Spectroscopic and theoretical approaches reveal that thermo- and photo-stimulations of energies trapped at intrinsic lattice defects followed by energy transfer to Gd3+ emitters account for the emergence of the afterglow. The present results can initiate more exploration of NB-UVB PersL phosphors for emerging applications in secret optical tagging and phototherapy.

4.
Environ Monit Assess ; 195(12): 1510, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37989923

RESUMO

The PM2.5 (particulate matter with a diameter of fewer than 2.5 µm) has become a global topic in environmental science. The neural network that based on the non-linear regression algorithm, e.g., deep learning, is now believed to be one of the most facile and advanced approaches in PM2.5 concentration prediction. In this study, we proposed a PM2.5 predictor using deep learning as infrastructure and meteorological data as input, for predicting the next hour PM2.5 concentration in Beijing Aotizhongxin monitor point. We efficiently use the parameter's spatiotemporal correlation by concatenating the dataset with time series. The predicted PM2.5 concentration was based on meteorology changes over a period. Therefore, the accuracy would increase with the period growing. By extracting the intrinsic features between meteorological and PM2.5 concentration, a fast and accurate prediction was carried out. The R square score reached maximum of 0.98 and remained an average of 0.9295 in the whole test. The average bias of the model is 9 µg on the validation set and 1 µg on the training set. Moreover, the differences between the predictions and expectations can be further regarded as the estimation for the emission change. Such results can provide scientific advice to supervisory and policy workers.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Meteorologia , Monitoramento Ambiental/métodos , Material Particulado/análise , Redes Neurais de Computação , Previsões
5.
Inorg Chem ; 61(50): 20647-20656, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36480909

RESUMO

Persistent phosphors emitting in the narrowband ultraviolet-B (NB-UVB) spectral region have aroused significant interest, owing to their special self-illuminating feature in realizing many advanced technological applications under excitation-free conditions, such as dermatological therapy and invisible optical tagging. Here, we focus our discussion on a new Gd3+-doped persistent phosphor, Sr2P2O7:Gd3+, which exhibits long-lasting NB-UVB persistent luminescence peaking at 312 nm for more than 24 h after charging by an X-ray beam. The NB-UVB light emission from the charged Sr2P2O7:Gd3+ phosphor can be clearly detected by a UVB camera in bright indoor environment. More importantly, the enhancement of NB-UVB afterglow intensity and decay time can be observed under continuous photostimulation of polychromic indoor ambient light. Furthermore, applying charged Sr2P2O7:Gd3+ phosphors as invisible optical taggants, clear and interference-free recognition of the encrypted message and location of different objects have been realized due to the lack of UVB light in bright indoor environment. The as-prepared Sr2P2O7:Gd3+ persistent phosphor is expected to offer new directional solutions for the development and application of ultraviolet luminescence technology.

6.
Angew Chem Int Ed Engl ; 60(46): 24450-24455, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34453771

RESUMO

We report the growth of a halide-based double perovskite, Cs2 Nax Ag1-x InCl6 :y%Mn, via a facile hydrothermal reaction at 180 °C. Through a co-doping strategy of both Na+ and Mn2+ , the as-prepared crystals exhibited a red afterglow featuring a high color purity (ca. 100 %) and a long duration time (>5400 s), three orders of magnitude longer than those solution-processed organic afterglow crystals. The energy transfer (ET) process between self-trapped excitons (STE) and activators was investigated through time-resolved spectroscopy, which suggested an ET efficiency up to 41 %. Importantly, the nominal concentration of dopants, especially in the case of Na+ , was found a useful tool to control both energy level and number distribution of traps. Cryogenic afterglow measurements suggested that the afterglow phenomenon was likely governed by thermal-activated exciton diffusion and electron tunneling process.

7.
J Cell Mol Med ; 24(9): 5162-5167, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32202046

RESUMO

Radiotherapy is an important strategy for NSCLC. However, although a variety of comprehensive radiotherapy-based treatments have dominated the treatment of NSCLC, it cannot be avoided to overcome the growing radioresistance during radiotherapy. The purpose of this study was to elucidate the radiosensitizing effects of NSCLC via knockdown GTSE1 expression and its mechanism. Experiments were performed by using multiple NSCLC cells such as A549, H460 and H1299. Firstly, we found GTSE1 conferred to radioresistance via clonogenic assay and apoptosis assay. Then, we detected the level of DNA damage through comet assay and γH2AX foci, which we could clearly observe knockdown GTSE1 enhance DNA damage after IR. Furthermore, through using laser assay and detecting DNA damage repair early protein expression, we found radiation could induce GTSE1 recruited to DSB site and initiate DNA damage response. Our finding demonstrated that knockdown GTSE1 enhances radiosensitivity in NSCLC through DNA damage repair pathway. This novel observation may have therapeutic implications to improve therapeutic efficacy of radiation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Dano ao DNA , Reparo do DNA , Técnicas de Silenciamento de Genes , Neoplasias Pulmonares/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Tolerância a Radiação , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Humanos , RNA Interferente Pequeno/metabolismo , Tolerância a Radiação/genética , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante
8.
J Cell Mol Med ; 24(18): 11018-11023, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32700471

RESUMO

Radiotherapy is one of the most important treatments for chest tumours. Although there are plenty of strategies to prevent damage to normal lung tissues, it cannot be avoided with the emergence of radiation-induced lung injury. The purpose of this study was to investigate the potential radioprotective effects of glucosamine, which exerted anti-inflammatory activity in joint inflammation. In this study, we found glucosamine relieved inflammatory response and structural damages in lung tissues after radiation via HE staining. Then, we detected the level of epithelial-mesenchymal transition marker in vitro and in vivo, which we could clearly observe that glucosamine treatment inhibited epithelial-mesenchymal transition. Besides, we found glucosamine could inhibit apoptosis and promote proliferation of normal lung epithelial cells in vitro caused by radiation. In conclusion, our data showed that glucosamine alleviated radiation-induced lung injury via inhibiting epithelial-mesenchymal transition, which indicated glucosamine could be a novel potential radioprotector for radiation-induced lung injury.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucosamina/uso terapêutico , Pulmão/efeitos da radiação , Fibrose Pulmonar/prevenção & controle , Lesões Experimentais por Radiação/tratamento farmacológico , Pneumonite por Radiação/prevenção & controle , Protetores contra Radiação/uso terapêutico , Células Epiteliais Alveolares/efeitos da radiação , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Avaliação Pré-Clínica de Medicamentos , Feminino , Raios gama/efeitos adversos , Glucosamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/etiologia , Pneumonite por Radiação/etiologia , Protetores contra Radiação/farmacologia , Ratos
9.
Hereditas ; 157(1): 36, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847617

RESUMO

Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that serves as a key regulator of cellular physiology in the context of apoptosis, mitosis, and DNA damage responses. Canonically, PP2A functions as a tumor suppressor gene. However, recent evidence suggests that inhibiting PP2A activity in tumor cells may represent a viable approach to enhancing tumor sensitivity to chemoradiotherapy as such inhibition can cause cells to enter a disordered mitotic state that renders them more susceptible to cell death. Indeed, there is evidence that inhibiting PP2A can slow tumor growth following radiotherapy in a range of cancer types including ovarian cancer, liver cancer, malignant glioma, pancreatic cancer, and nasopharyngeal carcinoma. In the present review, we discuss current understanding of the role of PP2A in tumor radiotherapy and the potential mechanisms whereby it may influence this process.


Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Humanos , Mitose/genética , Mitose/efeitos da radiação , Neoplasias/patologia , Neoplasias/radioterapia , Tolerância a Radiação/genética , Radioterapia , Resultado do Tratamento
10.
Environ Geochem Health ; 42(3): 769-780, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30852732

RESUMO

In recent years, acid rain had a serious negative impact on the leaching behavior of industrial waste residue. Researches were mainly focused on the environmental hazards of heavy metal in the leachate, but ignored the effects of heavy metal speciation on the stability of waste residue in the subsequent stabilization process. In this study, the unstable calcium-arsenic compounds in the arsenic calcium residue were firstly removed by leaching process; subsequently, the crystallization agent was added to treat the remaining calcium-arsenic mixture. The results of the leaching process demonstrated that the decrease in particle size and pH value directly affected the increase in the cumulative leaching amount of arsenic, and the cumulative leaching ratio reached 1.55%. In addition, the concentration of arsenic decreased from 3583 to 49.1 mg L-1. After the crystallization process, the arsenic concentration was lower than the limit value of Identification Standards for Hazardous Wastes (GB 5085.3-2007). The SEM analysis showed the bulk structures, and XRD pattern confirmed that they were the stable compounds. Moreover, the result of XRD and SEM illustrated that acid concentration, chloride ions and sulfate ions were contributed to the transformation and growth of stable calcium arsenate compounds. Therefore, effective control of the acidity of acid rain, the type of anions in acid rain, and the particle size of residues would contribute to adjusting the arsenic speciation to be more stable. The leaching-crystallization process was of great significance to improve the stability of the arsenic-containing residue.


Assuntos
Chuva Ácida , Arseniatos/química , Arsênio/química , Compostos de Cálcio/química , Chuva Ácida/análise , Arsênio/análise , Cálcio/análise , Cálcio/química , Cristalização , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Difração de Raios X
11.
Artigo em Inglês | MEDLINE | ID: mdl-28095118

RESUMO

This study focuses on the modeling and optimization of lime-based stabilization in high alkaline arsenic-bearing sludges (HAABS) and describes the relationship between the arsenic leachate concentration (ALC) and stabilization parameters to develop a prediction model for obtaining the optimal process parameters and conditions. A central composite design (CCD) along with response surface methodology (RSM) was conducted to model and investigate the stabilization process with three independent variables: the Ca/As mole ratio, reaction time and liquid/solid ratio, along with their interactions. The obvious characteristic changes of the HAABS before and after stabilization were verified by X-ray diffraction (XRD), scanning electron microscopy (SEM), particle size distribution (PSD) and the community bureau of reference (BCR) sequential extraction procedure. A prediction model Y(ALC) with a statistically significant P-value <0.01 and high correlation coefficient R2 = 93.22% was obtained. The optimal parameters were successfully predicted by the model for the minimum ALC of 0.312 mg/L, which was validated with the experimental result (0.306 mg/L). The XRD, SEM and PSD results indicated that crystal calcium arsenate Ca5(AsO4)3OH and Ca4(OH)2(AsO4)2·4H2O formation played an important role in minimizing the ALC. The BCR sequential extraction results demonstrated that the treated HAABS were stable in a weak acidic environment for a short time but posed a potential environmental risk after a long time. The results clearly confirm that the proposed three-factor CCD is an effective approach for modeling the stabilization of HAABS. However, further solidification technology is suggested for use after lime-based stabilization treatment of arsenic-bearing sludges.


Assuntos
Álcalis/química , Arsênio/química , Compostos de Cálcio/química , Modelos Teóricos , Óxidos/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Arseniatos/química , Calibragem , Humanos , Concentração de Íons de Hidrogênio , Difração de Raios X
12.
Opt Lett ; 41(5): 954-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974089

RESUMO

We report a new phonon-assisted upconversion excitation design that enables the excitation energy to be lower than the persistent luminescence emission energy in persistent phosphors. We demonstrate this upconversion excitation concept in Zn3Ga2GeO8:Cr(3+) near-infrared persistent phosphor by achieving Cr(3+) 700 nm persistent emission using 800 or 980 nm laser diode excitation. Depending on the sample temperature, the excitation photon energy can be tuned, and the persistent luminescence intensity can be adjusted. Depending on the excitation power, the upconversion trap filling process involves either one photon (for filling low-energy traps) or two photons (for filling high-energy traps). Our research provides a major step toward manipulating the electronic excitation in persistent luminescence, which has implication for many applications.


Assuntos
Raios Infravermelhos , Luminescência , Óxidos/química , Fônons , Transporte de Elétrons , Gálio/química , Germânio/química , Zinco/química
13.
J Environ Manage ; 181: 756-761, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27449964

RESUMO

Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials.


Assuntos
Arsênio/química , Recuperação e Remediação Ambiental/métodos , Resíduos Perigosos , Metalurgia , Metais Pesados/química , Esgotos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Arsênio/análise , China , Materiais de Construção , Resíduos Industriais/análise , Chumbo/química , Reciclagem , Poluentes Químicos da Água/análise , Zinco/química
14.
Water Environ Res ; 87(4): 347-57, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26462079

RESUMO

In this study, FLUENT software was used to simulate the flow regime of an integrated sludge thickening and digestion reactor. To optimize the flow regime, the combinational effect of key parameters of the reactor structure was investigated with an L16 (4(5)) orthogonal test. The reactor was then redesigned based on the optimization results, and a series of experiments was conducted to study the treatment effect with sludge dosage rates of 12, 18, 24, and 30%. The operation results showed that the reactor obtained the best treatment efficiency when the sludge dosage rate was 24%. At this dosage, the water content of the sludge decreased from 99.1% to 91.8%, with organic matter content (volatile solids [VS]/total solids) decreasing to 21.2% and average gas production (CH4 62.66%, CO2 11.56%, N2 23.91%, O2 1.59%) reaching 231.3 L/kg VS. Therefore, the results implied that the optimized reactor has good effects on sludge thickening and digestion.


Assuntos
Esgotos/química , Gerenciamento de Resíduos/instrumentação , Simulação por Computador , Desenho de Equipamento , Ácidos Graxos Voláteis/análise , Hidrodinâmica , Software
15.
Phys Rev Lett ; 113(17): 177401, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25379936

RESUMO

Up-conversion luminescence and long-persistent luminescence are two well-studied, special luminescence processes. By combining the unique features of these two luminescence processes, here we design a new luminescence process called up-converted persistent luminescence (UCPL), which enables us to generate persistent luminescence having an emission energy higher than the excitation energy. Guided by the UCPL concept, we create the first UCPL phosphor Zn3Ga2GeO8:1%Cr3+, 5%Yb3+, 0.5%Er3+ by incorporating an up-converting ion pair Yb3+/Er3+ into a Zn3Ga2GeO8:1%Cr3+ near-infrared persistent phosphor. After being excited by a 980 nm laser, the phosphor emits long-lasting (>24 h) near-infrared persistent emission peaking at 700 nm. The UCPL concept and the associated phosphors are expected to have important implications for several fields such as biomedical imaging.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38663002

RESUMO

Discovering multifunctional luminescent materials to meet the demands of modern spectroscopy is of great significance. However, it is a standing challenge to enable multiple luminescence properties in a single material system via single metal ion doping. Here, we report the inherently Bi3+/Bi2+ codoped Ca3Ga2Ge3O12 persistent phosphor where Bi3+ is in situ reduced to Bi2+. This phosphor can act as an efficient multimodal luminescence material, which simultaneously exhibits long-lasting (>12 h) ultraviolet-B (UVB) and near-infrared (NIR) dual-band persistent luminescence after irradiation by 254 nm ultraviolet (UV) light. UVB and NIR afterglow are ascribed to the distinct Bi3+ and Bi2+ emitters, respectively, proven by comprehensive spectroscopic investigations including X-ray absorption near-edge structure spectra and X-ray photoelectron spectroscopy. Besides, this phosphor also exhibits exceptional photochromic features, accompanied by a rapid body color transformation from white to brown in response to 254 nm UV light within 60 s and excellent recovery capacity upon thermal or blue/white light stimulation. The combination of UVB persistent luminescence of Bi3+ and NIR afterglow of Bi2+ coupled with reversible white-to-brown photochromism phenomenon offers one type of promising multifunctional luminescence material, showing potential to be used for optical storage and anti-counterfeiting applications.

17.
Heliyon ; 10(12): e33109, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988583

RESUMO

Tumor-infiltrating immune cells (TICs) play a central role in the tumor microenvironment, which can reflect the host anti-tumor immune response. However, few studies have explored TICs in predicting the prognosis of lung adenocarcinoma (LUAD). In our study, we enrolled 2470 LUAD patients from TCGA and GEO databases, and the normalized enrichment scores for 65 immune cell types were quantified for each patient. An immune-related risk score (IRRS) was built on the basis of 17 selected TICs using LASSO regression analysis, and the results showed that high-risk patients were correlated with shorter survival time for the LUAD cohorts. Correlation analyses between IRRS and clinical characteristics were also evaluated to validate the clinical use of IRRS. In addition, we analyzed the differences in the distribution of immune cell infiltration and immunoregulatory gene expression, which may facilitate individual immunotherapy. Based on the above result, we conclude that IRRS can act as a powerful predictor for risk stratification and prognosis prediction, and may facilitate the decision-making process for LUAD patients.

18.
Ir J Med Sci ; 192(1): 57-64, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35138567

RESUMO

BACKGROUNDS: WNK1 (WNK lysine deficient protein kinase 1) is a kind of protein kinase and participates in angiogenesis, having a potent tumor promoting role. WNK1 is ubiquitously expressed, and its upregulated expression has been reported in several tumor types. AIMS: Here, we aimed to investigate the correlation between WNK1 expression and colon adenocarcinoma (COAD) progression. METHODS: In the current study, WNK1 expression was evaluated by immunohistochemically in adjacent normal colonic mucosae and primary adenocarcinomas. The effect of WNK1 on overall survival (OS) and its associations with the clinicopathological parameters were analyzed in a retrospective cohort of COAD patients (n = 185). The tumor-related effects of WNK1 in COAD were further tested via cellular and mice experiments. RESULTS: According to our cohort, higher WNK1 expression was significantly associated with unfavorable prognostic factors, such as high pT stage, pN stage, as well as shorter OS. Moreover, WNK1 exhibited tumor promoting role in COAD cancer cell lines as well as in nude mice. Silencing WNK1 can significantly inhibit the proliferation of COAD both in vitro and in vivo. CONCLUSIONS: In all, WNK1 acts as a tumor promoter and may be used as a COAD prognostic biomarker.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Animais , Camundongos , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Camundongos Nus , Estudos Retrospectivos , Prognóstico
19.
Adv Mater ; 35(35): e2301897, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37169356

RESUMO

The sluggish kinetics and issues associated with the parasitic reactions of cathodes are major obstacles to the large-scale application of Li-O2 batteries (LOBs), despite their large theoretical energy density. Therefore, efficient electrocatalyst design is critical for optimizing their performance. Ni5 P4 is analyzed theoretically as a cathode material, and the downshift of the d-band center is found to enhance electron occupation in antibonding orbits, providing a valuable descriptor for understanding and enhancing the intrinsic electrocatalytic activity. In this study, it is demonstrated that incorporating additional nitrogen atoms into Ni5 P4 nanoroses regulates the electronic structure, resulting in superior electrocatalytic performance in LOBs. Further spectroscopic analysis and density functional theory calculations reveal that the incorporated nitrogen sites can effectively induce localized structure polarization, lowering the energy barrier for the production of desirable intermediates and thus enhancing battery capacity and preventing cell degradation. This approach provides a sound basis for developing advanced electrode materials with optimized electronic structures for high-performance LOBs.

20.
ACS Appl Mater Interfaces ; 15(27): 32580-32588, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384930

RESUMO

Blue InGaN chip-pumped short-wave infrared (SWIR) emitters have aroused tremendous attention and shown emerging applications in diverse fields such as healthcare, retail, and agriculture. However, discovering blue light-emitting diode (LED)-pumped SWIR phosphors with a central emission wavelength over 1000 nm remains a significant challenge. Herein, we demonstrate the efficient broadband SWIR luminescence of Ni2+ by simultaneously incorporating Cr3+ and Ni2+ ions into the MgGa2O4 lattice, with Cr3+ as the sensitizer and Ni2+ as the emitter. Because of the strong blue light absorption of Cr3+ and high energy transfer efficiency to Ni2+, the obtained MgGa2O4:Cr3+, Ni2+ phosphors show intense SWIR luminescence with a peak wavelength at 1260 nm and a full width at half maximum (FWHM) of 222 nm under the excitation of blue light. The optimized SWIR phosphor presents an ultra-high SWIR photoluminescence quantum efficiency of 96.5% and outstanding luminescence thermal stability (67.9%@150 °C). A SWIR light source has been fabricated through a combination of the prepared MgGa2O4:Cr3+, Ni2+ phosphor and a commercial 450 nm blue LED chip, delivering a maximum SWIR radiant power of 14.9 mW at 150 mA input current. This work not only demonstrates the feasibility of developing broadband high-power SWIR emitters using converter technology but also presents new insights into the importance of SWIR technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA