RESUMO
BACKGROUND: Psoriasis is a prevalent chronic inflammatory dermatosis characterized by excessive proliferation of keratinocytes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly identified post-translational modification that regulates various biological processes. Abnormal Khib modification has been closely associated with the development of autoimmune diseases. OBJECTIVE: To investigate the abnormal Khib profile and its pathogenic role in psoriasis. METHODS: We utilized liquid chromatography-tandem mass spectrometry to analyze Khib-modified proteins in the epidermis of psoriasis and healthy controls. Mutated cells and mice with downregulated Ebp1Khib210 were generated to investigate its functional effects in psoriasis. RESULTS: The omic analysis revealed dysregulation of Khib modification in psoriatic lesions, exhibiting a distinct profile compared to controls. We observed the downregulation of Ebp1Khib210 in psoriatic lesions and IMQ-induced psoriatic mice. Notably, the expression of Ebp1Khib210 was upregulated in psoriatic patients following effective treatment. Decreased Ebp1Khib210 enhanced keratinocyte viability, proliferation, and survival while inhibiting apoptosis in vitro. Additionally, Pa2g4K210A mice with downregulated Ebp1Khib210 exhibited more severe psoriatic lesions and enhanced keratinocyte proliferation. Moreover, we found that Ebp1K210A mutation increased the interaction between Ebp1 and nuclear Akt, thereby inhibiting MDM2-mediated TIF-IA ubiquitination, and resulting to increased rRNA synthesis and keratinocyte proliferation. The downregulation of Ebp1Khib210 was attributed to inflammation-induced increases in HDAC2 expression. CONCLUSION: Our findings demonstrate that downregulation of Ebp1Khib210 promotes keratinocyte proliferation through modulation of Akt signaling and TIF-IA-mediated rRNA synthesis. These insights into Khib modification provide a better understanding of the pathogenesis of psoriasis and suggest potential therapeutic targets.
RESUMO
ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.
Assuntos
Isoformas de Proteínas , Humanos , Isoformas de Proteínas/metabolismo , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Neoplasias/metabolismo , Ligação ProteicaRESUMO
The Sapindaceae family, encompassing a wide range of plant forms such as herbs, vines, shrubs, and trees, is widely distributed across tropical and subtropical regions. This family includes economically important crops like litchi, longan, rambutan, and ackee. With the wide application of genomic technologies in recent years, several Sapindaceae plant genomes have been decoded, leading to an accumulation of substantial omics data in this field. This surge in data highlights the pressing need for a unified genomic data center capable of storing, sharing, and analyzing these data. Here, we introduced SapBase, that is, the Sapindaceae Genome Database. SapBase houses seven published plant genomes alongside their corresponding gene structure and functional annotations, small RNA annotations, gene expression profiles, gene pathways, and synteny block information. It offers user-friendly features for gene information mining, co-expression analysis, and inter-species comparative genomic analysis. Furthermore, we showcased SapBase's extensive capacities through a detailed bioinformatic analysis of a MYB gene in litchi. Thus, SapBase could serve as an integrative genomic resource and analysis platform for the scientific exploration of Sapinaceae species and their comparative studies with other plants.
Assuntos
Genoma de Planta , Genômica , Sapindaceae , Sapindaceae/genética , Bases de Dados Genéticas , Anotação de Sequência Molecular , Sintenia/genética , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: Genome-wide association studies have identified over 120 risk loci for psoriasis. However, most of the variations are located in non-coding region with high frequency and small effect size. Pathogenetic variants are rarely reported except HLA-C*0602 with the odds ratio being approximately 4.0 in Chinese population. Although rare variations still account for a small proportion of phenotypic variances in complex diseases, their effect on phenotypes is large. Recently, more and more studies focus on the low-frequency functional variants and have achieved a certain amount of success. METHOD: Whole genome sequencing and sanger sequencing was performed on 8 MZ twin pairs discordant for psoriasis to scan and verified the de novo mutations (DNMs). Additionally, 665 individuals with about 20 years' medical history versus 2054 healthy controls and two published large population studies which had about 8 years' medical history (including 10,727 cases versus 10,582 controls) were applied to validate the enrichment of rare damaging mutations in two DNMs genes. Besides, to verify the pathogenicity of candidate DNM in C3, RNA-sequencing for CD4+, CD8+ T cells of twins and lesion, non-lesion skin of psoriasis patients were carried out. Meanwhile, the enzyme-linked immunosorbent assay kit was used to detect the level of C3, C3b in the supernatant of peripheral blood. RESULT: A total of 27 DNMs between co-twins were identified. We found six of eight twins carry HLA-C∗0602 allele which have large effects on psoriasis. And it is interesting that a missense mutation in SPRED1 and a splice region mutation in C3 are found in the psoriasis individuals in the other two MZ twin pairs without carrying HLA-C*0602 allele. In the replication stage, we found 2 loss-of-function (LOF) variants of C3 only in 665 cases with about 20 years' medical history and gene-wise analysis in 665 cases and 2054 controls showed that the rare missense mutations in C3 were enriched in cases (ORâ¯=â¯1.91, Pâ¯=â¯0.0028). We further scanned the LOF mutations of C3 in two published studies (about 8 years' medical history), and found one LOF mutation in the case without carrying HLA-C*0602. In the individual with DNM in C3, RNA sequencing showed the expression level of C3 in skin was significant higher than healthy samples in public database (TPM fold changeâ¯=â¯1.40, Pâ¯=â¯0.000181) and ELISA showed protein C3 in peripheral blood was higher (~2.2-fold difference) than the other samples of twins without DNM in C3. CONCLUSION: To the best of our knowledge, this is the first report that DNM in C3 is the likely pathological mutations, and it provided a better understanding of the genetic etiology of psoriasis and additional treatments for this disease.
Assuntos
Mutação/genética , Psoríase/genética , Adolescente , Adulto , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Criança , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Psoríase/patologia , Sequenciamento Completo do Genoma/métodos , Adulto JovemRESUMO
Psoriasis is a prevalent skin disease affecting approximately 1%-3% of the population and imposes significant medical, social and economic burdens. Psoriasis involves multiple organs and is often complicated with obesity, diabetes, dyslipidemia, and hypertension. Because of the benefits of lipid-lowering agents and antidiabetic medications for psoriasis, metabolic abnormalities possibly play a pathogenic role in psoriasis.This review focuses on the impacts of a variety of metabolic disorders on psoriasis and the underlying mechanisms.In psoriasis, enhanced glycolysis, glutamine metabolism and altered fatty acid composition in the psoriatic lesion and plasma result in the excessive proliferation of keratinocytes and secretion of inflammatory cytokines. Altered metabolism is associated with the activation of MTORC signaling pathway and transcription factors such as HIF and S6K1. Therefore, MTORC1 can be a target for the treatment of psoriasis. Additionally, there are diabetes drugs and lipid-lowering drugs including TZDs, GLP-1 RAs, Metformin, statins and fibrates, which improve both metabolic levels and psoriasis symptoms.
Assuntos
Psoríase , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Psoríase/complicações , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: Psoriasis is a chronic recurrent inflammatory disease. Mesenchymal stem cells (MSCs) can regulate the inflammatory microenvironment, thereby controlling the proliferation, differentiation, and migration of immune cells. Connexin 43(Cx43), a key gap junction protein, has been shown to form gap junctions for communication between neighboring cells. OBJECTIVE: We investigated the expression of Cx43 in dermal mesenchymal stem cells (DMSCs) derived from psoriasis patients and explored the relationship between the Cx43-mediated gap junction intercellular communication (GJIC) and DMSCs. METHODS: Human DMSCs were isolated and propagated in adherent culture. Quantitative real-time reverse transcription PCR and western blot and immunofluorescence were used to detect the expression and localization of Cx43 in DMSCs. Fluorescence redistribution after photobleaching was performed to assess adjacent DMSCs GJIC. CCK8 was used to detect the proliferation of DMSCs before and after gap junction blocker (18α-glycyrrhetinic acid; AGA) treatment. Cell energy metabolism was analyzed with an energy metabolism analyzer. RESULTS: Cx43 was located in the cytoplasm and cytomembrane, as well as partially in the nucleus of DMSCs. The expression of Cx43 in psoriasis DMSCs was higher than that in control samples and the gap junction function was enhanced. In addition, the glycolysis and mitochondrial respiration of psoriasis DMSCs were also enhanced. However, AGA inhibited the expression of Cx43, attenuated GJIC function, and inhibited the proliferation of DMSCs. CONCLUSIONS: Our results indicated that the expression of Cx43 in DMSCs from psoriasis lesions is increased and that the inhibition of Cx43 leads to the inhibition of both GJIC and DMSCs proliferation.