Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362072

RESUMO

A kind of hydroxylated polymethoxyflavone (PMFs) existing in the citrus genus, 5-Demethyltangeretin (5-DTAN), has been reported to possess several bioactivities in vitro and in vivo. The aim of this study was to investigate whether acetylation could enhance the anticancer activity and oral bioavailability of 5-DTAN. PC-3 human prostate cancer cells were treated with tangeretin (TAN), 5-DTAN, and 5-acetylated TAN (5-ATAN), and the results showed that the cytotoxic effect 5-ATAN (IC50 value of 5.1 µM) on the cell viability of PC-3 cells was stronger than that of TAN (IC50 value of 17.2 µM) and 5-DTAN (IC50 value of 11.8 µM). Compared to 5-DTAN, 5-ATAN treatment caused a more pronounced DNA ladder, increased the sub-G1 phase population, and induced G2/M phase arrest in the cell cycle of PC-3 cells. We also found that 5-ATAN triggered the activation of caspase-3 and the progression of the intrinsic mitochondrial pathway in PC-3 cells, suggesting the induction of apoptosis. In a cell wound healing test, 5-ATAN dose-dependently reduced the cell migration, and the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was decreased after 48 h of 5-ATAN treatment. Moreover, oral administration of 5-ATAN showed a significantly stronger inhibitory effect on tumor size and tumor weight in tumor-bearing nude mice than those of vehicle or the 5-DTAN group (p < 0.05). Furthermore, pharmacokinetic results showed that single-dose oral administration of 5-ATAN exhibited a higher maximum concentration (Cmax) and area under the curve (AUC) of 5-DTAN in plasma than that of 5-DTAN. More extensive distribution of 5-DTAN to most tissues of mice was also observed in mice treated with 5-ATAN for 7 days. In conclusion, acetylation strongly enhances the anticancer activity and oral bioavailability of 5-DTAN and could be a promising strategy to promote the potential bioactivities of natural products.


Assuntos
Antineoplásicos , Flavonas , Animais , Humanos , Masculino , Camundongos , Acetilação , Apoptose , Disponibilidade Biológica , Linhagem Celular Tumoral , Metaloproteinase 2 da Matriz , Camundongos Nus , Flavonas/química , Flavonas/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética
2.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234689

RESUMO

D-limonene (4-isopropenyl-1-methylcyclohexene) is an important compound in several citrus essential oils (such as orange, lemon, tangerine, lime, and grapefruit). It has been used as a flavoring agent and as a food preservative agent, with generally recognized as safe (GRAS) status. D-limonene has been well-studied for its anti-inflammatory, antioxidant, anti-cancer, and antibacterial properties. The antibacterial activity of D-limonene against food-borne pathogens was investigated in this study by preparing a D-limonene nanoemulsion. The D-limonene solution and nanoemulsion have been prepared in six concentrations, 0.04%, 0.08%, 0.1%, 0.2%, 0.4%, and 0.8% (v/v), respectively, and the antibacterial activity was tested against four food-borne pathogens (Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, and Escherichia coli). The results showed that the D-limonene nanoemulsion had good nanoscale and overall particle size uniformity, and its particle size was about 3~5 nm. It has been found that the D-limonene solution and nanoemulsion have a minimal inhibitory concentration of 0.336 mg/mL, and that they could inhibit the growth of microorganisms efficiently. The data indicate that the D-limonene nanoemulsion has more antibacterial ability against microorganisms than the D-limonene essential oil. After bananas are treated with 1.0% and 1.5% D-limonene nanoemulsion coatings, the water loss of the bananas during storage and the percentage of weight loss are reduced, which can inhibit the activity of pectinase. The application of a biocoating provides a good degree of antibacterial activity and air and moisture barrier properties, which help with extending the shelf life of bananas.


Assuntos
Citrus , Filmes Comestíveis , Musa , Óleos Voláteis , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Cicloexenos/farmacologia , Escherichia coli , Aromatizantes/farmacologia , Conservantes de Alimentos/farmacologia , Limoneno/farmacologia , Óleos Voláteis/farmacologia , Poligalacturonase , Terpenos/farmacologia , Água/farmacologia
3.
Phytopathology ; 110(12): 1877-1885, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32692280

RESUMO

Tomato is an economic crop worldwide. Many limiting factors reduce the production of tomato, with bacterial wilt caused by Ralstonia solanacearum being the most destructive disease. Our previous study showed that the disease resistance to bacterial soft rot is enhanced by Bacillus amyloliquefaciens strain PMB05. This enhanced resistance is associated with the intensification of pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). To determine whether the PTI-intensifying Bacillus spp. strains are able to confer disease resistance to bacterial wilt, their effects on PTI signals triggered by PAMP from R. solanacearum and on the occurrence of bacterial wilt were assayed. Before assay, a gene that encodes harpin from R. solanacearum, PopW, was applied as a PAMP. Results revealed that the B. amyloliquefaciens strain PMB05 was the one strain among 9 Bacillus rhizobacterial strains which could significantly intensify the PopW-induced hypersensitive response (HR) on Arabidopsis leaves. Moreover, we observed that the signals of PopW-induced reactive oxygen species generation and callose deposition were increased, confirming that the PTI was intensified by PMB05. The intensification of the PopW-triggered HR by PMB05 in Arabidopsis was reduced upon treatment with inhibitors in PTI pathways. Furthermore, the application of Bacillus spp. strains on tomato plants showed that only the use of PMB05 resulted in significantly increased resistance to bacterial wilt. Moreover, the PTI signals were also intensified in the tomato leaves. Taken together, we demonstrated that PMB05 is a PTI-intensifying bacterium that confers resistance to tomato bacterial wilt. Screening of plant immunity intensifying rhizobacteria is a possible strategy to control tomato bacterial wilt.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Bacillus amyloliquefaciens , Ralstonia solanacearum , Solanum lycopersicum , Doenças das Plantas , Imunidade Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA