RESUMO
The synthesis of hackmanite has been a topic of research for nearly 100 years, but up to now, the reported synthesis methods inevitably use reducing H2 to introduce the F-center through high-temperature calcination to make it change color, which extremely hinders its energy efficient large-scale synthesis before commercial applications. Herein, we present a facile route to synthesize hackmanite by using organic sulfur source thiourea as a precursor in a mild and hydrogen-free process. The synthesized hackmanite exhibits UVC-specific response, fast response, high contrast coloring, and fast fading at room temperature. In view of its photochromic features, a proof-of-concept is presented for transient information storage and burning-after-reading protection; the written information can be automatically erased within 8 min at room temperature.
RESUMO
Marine fungi represent a huge untapped resource of natural products. The bio-activity of a new asperbutenolide A from marine fungus Aspergillus terreus was not well known. In the present study, the minimum inhibitory concentration (MIC) and RNA-Sequencing were used to analyze the bio-activity and sterilization mechanism of asperbutenolide A against clinical pathogenic microbes. The results showed that the MICs of asperbutenolide A against methicillin-resistant Staphylococcus aureus (MRSA) were 4.0-8.0â µg/mL. The asperbutenolide A present poor bio-activity against with candida. The sterilization mechanism of asperbutenolide A against MRSA showed that there were 1426 differentially-expressed genes (DEGs) between the groups of MRSA treated with asperbutenolide A and negative control. Gene Ontology (GO) classification analysis indicated that the DEGs were mainly involved in cellular process, metabolic process, cellular anatomical entity, binding, catalytic activity, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) classification analysis showed that these DEGs were mainly enriched in amino acid metabolism, carbohydrate metabolism, membrane transport, etc. Moreover, qRT-PCR showed similar trends in the expressions of argF, ureA, glmS and opuCA with the RNA-Sequencing. These results indicated that asperbutenolide A was with ideal bio-activity against with MRSA and could be as a new antibacterial agent.
Assuntos
4-Butirolactona/análogos & derivados , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Fungos , RNARESUMO
Metal-organic frameworks (MOFs) with permanent porosity and multifunctional catalytic sites constructed by two or more organic ligands are regarded as effective heterogeneous catalysts to improve certain organic catalytic reactions. In this work, a pillared-layer Zn-MOF (MOF-LS10) was constructed by 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine (H4TCPP) and 2,5-di(pyridin-4-yl)thiazolo[5,4-d]thiazole (DPTZTZ). After activation, MOF-LS10 has a permanent porosity and moderate CO2 adsorption capacity. The introduction of thiazolo[5,4-d]thiazole (TZTZ), a photoactive unit, into the framework endows MOF-LS10 with excellent photocatalytic performance. MOF-LS10 can not only efficiently catalyze the formation of cyclic carbonates from CO2 and epoxide substrates under mild conditions but also can photocatalyze benzylamine coupling at room temperature. In addition, we used another two ligands 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (H4BTEB) and 1,4-di(pyridin-4-yl)benzene (DPB) to synthesize MOF-LS11 (constructed by BTEB4- and DPTZTZ) and MOF-LS12 (constructed by TCPP4- and DPB) in order to explore whether the pyrazine structural unit and the TZTZ structural unit synergistically catalyze the reaction. The electron paramagnetic resonance spectrum demonstrates that the superoxide radical (·O2-), generated by electron transfer from the MOF excited by light to the oxidant, is the main active substance of oxidation. The design and synthesis of MOF-LS10 provide an effective synthetic strategy for the development of versatile heterogeneous catalysts for various organic reactions and a wide range of substrates.
RESUMO
BACKGROUND: The development and innovation of biomechanical measurement methods provide a solution to the problems in ski jumping research. At present, research on ski jumping mostly focuses on the local technical characteristics of different phases, but studies on the technology transition process are less. OBJECTIVES: This study aims to evaluate a measurement system (i.e. the merging of 2D video recording, inertial measurement unit and wireless pressure insole) that can capture a wide range of sport performance and focus on the key transition technical characteristics. METHODS: The application validity of the Xsens motion capture system in ski jumping was verified under field conditions by comparing the lower limb joint angles of eight professional ski jumpers during the takeoff phase collected by different motion capture systems (Xsens and Simi high-speed camera). Subsequently, the key transition technical characteristics of eight ski jumpers were captured on the basis of the aforementioned measurement system. RESULTS: Validation results indicated that the joint angle point-by-point curve during the takeoff phase was highly correlated and had excellent agreement (0.966 ≤ r ≤ 0.998, P < 0.001). Joint root-mean-square error (RMSE) differences between model calculations were 5.967° for hip, 6.856° for knee and 4.009° for ankle. CONCLUSIONS: Compared with 2D video recording, the Xsens system shows excellent agreement to ski jumping. Furthermore, the established measurement system can effectively capture the key transition technical characteristics of athletes, particularly in the dynamic changes of straight turn into arc in inrun, the adjustment of body posture and ski movement during early flight and landing preparation.
Assuntos
Articulação do Tornozelo , Extremidade Inferior , Humanos , Fenômenos Biomecânicos , Atletas , TecnologiaRESUMO
Diabetic foot ulcer often leads to amputation, and both nutritional status and immune function have been associated with this process. We aimed to investigate the risk factors of diabetic ulcer-related amputation including the Controlling Nutritional Status score and neutrophil-to-lymphocyte ratio biomarker. We evaluated data from hospital in patients with diabetic foot ulcer, performing univariate and multivariate analyses to screen for high-risk factors and Kaplan-Meier analysis to correlate high-risk factors with amputation-free survival. Overall, 389 patients underwent 247 amputations over the follow-up period. After correction to relevant variables, we identified five independent risk factors for diabetic ulcer-related amputation: ulcer severity, ulcer site, peripheral arterial disease, neutrophil-to-lymphocyte ratio and nutritional status. Amputation-free survival was lower for the moderate-to-severe versus mild cases, for the plantar forefoot versus hindfoot location, for the concomitant peripheral artery disease versus without and in the high versus low neutrophil-to-lymphocyte ratio (all p < 0.01). The results showed that ulcer severity (p < 0.01), ulcer site (p < 0.01), peripheral artery disease (p < 0.01), neutrophil-to-lymphocyte ratio (p < 0.01) and Controlling Nutritional Status score (p < 0.05) were independent risk factors for amputation in diabetic foot ulcer patients and have predictive values for diabetic foot ulcer progression to amputation.
Assuntos
Diabetes Mellitus , Pé Diabético , Doença Arterial Periférica , Humanos , Pé Diabético/complicações , Estado Nutricional , Neutrófilos , Fatores de Risco , Linfócitos , Amputação Cirúrgica , Doença Arterial Periférica/complicações , Estudos RetrospectivosRESUMO
Polyimide covalent organic framework (PI-COF) materials that can realize intrinsic redox reactions by changing the charge state of their electroactive sites are considered as emerging electrode materials for rechargeable devices. However, the highly crystalline PI-COFs with hierarchical porosity are less reported due to the rapid reaction between monomers and the poor reversibility of the polyimidization reaction. Here, we developed a water-assistant synthetic strategy to adjust the reaction rate of polyimidization, and PI-COF (COFTPDA-PMDA) with kgm topology consisting of dual active centers of N,N,N',N'-tetrakis(4-aminophenyl)-1,4-benzenediamine (TPDA) and pyromellitic dianhydride (PMDA) ligands was successfully synthesized with high crystallinity and porosity. The COFTPDA-PMDA possesses hierarchical micro-/mesoporous channels with the largest surface area (2669 m2/g) in PI-COFs, which can promote the Li+ ions and bulky bis(trifluoromethanesulfonyl)imide (TFSI-) ions in organic electrolyte to sufficiently interact with the dual active sites on COF skeleton to increase the specific capacity of cathode materials. As a cathode material for lithium-ion batteries, COFTPDA-PMDA@50%CNT which integrated high surface area and dual active center of COFTPDA-PMDA with carbon nanotubes via π-π interactions gave a high initial charge capacity of 233 mAh/g (0.5 A/g) and maintains at 80 mAh/g even at a high current density of 5.0 A/g after 1800 cycles.
RESUMO
Recently, circular RNA was reported to be a significant participant in the development of tumorigenesis, including colorectal cancer. Therefore, we aimed to clarify the precise role of circ-keratin 6C (circ-KRT6C) in colorectal cancer progression. The relative expression levels of circ-KRT6C, microRNA-485-3p (miR-485-3p), and programmed cell death receptor ligand 1 (PDL1) were analyzed by real-time quantitative polymerase chain reaction and Western blot assays. The proliferation was assessed by cell count kit 8 and colony-forming assays. The apoptotic cells were determined by flow cytometry assay. The migration and invasion were analyzed by transwell assay. Colorectal cancer cells were cocultured with peripheral blood mononuclear cells or cytokine-induced killer cells to assess immune response. The interaction relationships among circ-KRT6C, miR-485-3p, and PDL1 were examined by dual-luciferase reporter assay. The effects of circ-KRT6C inhibition in vivo were analyzed by an animal experiment. circ-KRT6C was overexpressed in colorectal cancer tissues and cells, and its level was associated with overall survival time of patients with colorectal cancer. The suppression of circ-KRT6C suppressed growth, migration, invasion, and immune escape while stimulating apoptosis in colorectal cancer cells, which was abolished by shortage of miR-485-3p. In addition, overexpression of miR-485-3p repressed malignant progression and immune evasion of colorectal cancer by targeting PDL1, implying that PDL1 was a functional target of miR-485-3p. A xenograft experiment also suggested that circ-KRT6C inhibition could repress tumor growth in vivo. circ-KRT6C could increase PDL1 expression by functioning as an miR-485-3p sponge, which promoted malignant progression and immune evasion of colorectal cancer cells. SIGNIFICANCE STATEMENT: circ-keratin 6c could increase programmed cell death receptor ligand 1 expression by functioning as a microRNA-16-5p sponge, which promoted malignant progression and immune evasion of colorectal cancer.
Assuntos
Leucócitos Mononucleares , Humanos , Pessoa de Meia-IdadeRESUMO
AIM: Previous studies have reported that circular RNA (circRNA) is associated with the pathogenesis of CRC. This study was designed to reveal the mechanism of circ-ring finger protein 121 (circ-RNF121) in colorectal cancer (CRC). MATERIALS AND METHODS: The levels of circ-RNF121, microRNA-1224-5p (miR-1224-5p) and forkhead box M1 (FOXM1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was detected by western blot. Cell proliferation was analyzed by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell colony formation assays. Flow cytometry analysis was performed to investigate cell apoptosis. Cell migration and invasion were investigated by transwell and wound-healing assays. Cell glycolysis was detected using glucose, lactate and ADP/ATP ratio assay kits. The binding relationship between miR-1224-5p and circ-RNF121 or FOXM1 was predicted by starBase online database, and identified by dual-luciferase reporter assay. The impacts of circ-RNF121 silencing on tumor formation in vivo were disclosed by in vivo tumor formation assay. KEY FINDINGS: Circ-RNF121 and FOXM1 expression were dramatically upregulated, while miR-1224-5p expression was downregulated in CRC tissues or cells compared with control groups. Circ-RNF121 silencing repressed cell proliferation, migration, invasion and glycolysis but induced cell apoptosis in CRC, which were attenuated by miR-1224-5p inhibitor. Additionally, circ-RNF121 acted as a sponge of miR-1224-5p and miR-1224-5p bound to FOXM1. Circ-RNF121 silencing inhibited tumor growth in vivo. Furthermore, circ-RNF121 was secreted through being packaged into exosomes. SIGNIFICANCE: The finding provided a novel insight into studying circRNA-mediated CRC therapy.
RESUMO
PURPOSE: To address the issue of local drug delivery in tumor treatment, a novel nanoparticle-hydrogel superstructure, namely semi-interpenetrating polymer networks (semi-IPNs) hydrogel composed of poly (ethylene glycol) diacrylate (PEGDA) and hyaluronic acid (HA) and incorporated with paclitaxel (PTX) loaded PLGA nanoparticles (PEGDA-HA/PLGA-PTX), was prepared by in situ UV photopolymerization for the use of local drug delivery. METHODS: Using the gelation time, swelling rate and degradation rate as indicators, the optimal proportion of Irgacure 2959 initiator and the concentration of HA was screened and obtained for preparing hydrogels. Next, paclitaxel (PTX) loaded PLGA nanoparticles (PLGA-PTX NPs) were prepared by the emulsion solvent evaporation method. RESULTS: The mass ratio of the initiator was 1%, and the best concentration of HA was 5 mg/mL in PEGDA-HA hydrogel. In vitro experiments showed that PLGA-PTX NPs had similar cytotoxicity to free PTX, and the cell uptake ratio on NCI-H460 cells was up to 96% by laser confocal microscopy and flow cytometry. The drug release of the PEGDA-HA/PLGA-PTX hydrogel local drug delivery system could last for 13 days. In vivo experiments proved that PEGDAHA/PLGA-PTX hydrogel could effectively inhibit the tumor growth without causing toxic effects in mice. CONCLUSIONS: This study demonstrated that the PEGDA-HA/PLGA-PTX hydrogel is a promising local drug delivery system in future clinical applications for tumor therapy. A photopolymerized semi-interpenetrating polymer networks-based hydrogel incorporated with paclitaxel-loaded nanoparticles was fabricated by in situ UV photopolymerization, providing a promised nanoplatform for local chemotherapy of tumors.
Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Portadores de Fármacos/química , Hidrogéis/química , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Animais , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Ácido Hialurônico/química , Camundongos , Nanopartículas/química , Neoplasias/patologia , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Ruan Jian Qing Mai formula (RJQM), a multicomponent herbal formula, has been widely used to treat peripheral arterial disease (PAD) in China. However, its active compounds and mechanisms of action are still unknown. First, RNA sequencing analysis of 15 healthy and 16 PAD samples showed that 524 PAD differential genes were significantly enriched in Go Ontology (ribonucleotide metabolic process, oxidoreductase complex, and electron transfer activity), Kyoto Encyclopedia of Genes and Genomes (KEGG) and GSEA pathways (OXPHOS and TCA cycle), miRNA (MIR183), and kinase (PAK6). Fifty-three active ingredients in RJQM had similar structures to the seven drug molecules in CLUE. Then, network topology analysis of the 53 components-target-pathway-disease network yielded 10 active ingredients. Finally, computational toxicity estimations showed that the median lethal dose (LD50) of the 10 active ingredients was above 1000 mg/kg, and eight of them did not cause hepatotoxicity, mutagenicity, carcinogenicity, cytotoxicity, and immunotoxicity nor activate 12 toxic pathways. In conclusion, RJQM has a protection effect on PAD by regulating a complex molecular network. Part of the mechanism is associated with the regulation of OXPHOS by 10 active components, which may alleviate mitochondrial dysfunction and pathological metabolic programming.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Doença Arterial Periférica/prevenção & controle , Humanos , Doença Arterial Periférica/genética , Doença Arterial Periférica/metabolismoRESUMO
A supramolecular network [H4bdcbpy(NO3)2·H2O] (H4bdcbpy = 1,1'-Bis(3,5-dicarboxybenzyl)-4,4'-bipyridinium) (1) was prepared by a zwitterionic viologen carboxylate ligand in hydrothermal synthesis conditions. The as-synthesized (1) has been well characterized by means of single-crystal/powder X-ray diffraction, elemental analysis, thermogravimetric analysis and infrared and UV-vis spectroscopy. This compound possesses a three-dimensional supramolecular structure, formed by the hydrogen bond and π-π interaction between the organic ligands. This compound shows photochromic properties under UV light, as well as vapochromic behavior upon exposure to volatile amines and ammonia, in which the electron transfer from electron-rich parts to the electron-deficient viologen unit gives rise to colored radicals. Moreover, the intensive intermolecular H-bonding networks in 1 endows it with a proton conductivity of 1.06 × 10-3 S cm-1 in water at 90 °C.
RESUMO
3D printing of lignocellulosic biomass (cellulose, hemicellulose, and lignin) has attracted increasing attention by using this abundant, sustainable, and ecofriendly material. While cellulose can be easily tailored into a highly viscous ink for 3D printing, after solvent evaporation, the final printed structures become highly porous, fragile, and easily fall apart in water due to its hydrophilic nature. Lignin, another crucial component of natural lignocellulose, has not yet been reported for ink printing due to its unfavorable rheological behavior. Herein, a low-cost direct ink printing strategy is developed to fabricate lignin-based 3D structures with lignin no further refined and a more compact microstructure as well as different functionalities compared with printed cellulose. By using a soft triblock copolymer as the crosslinking agent, the rheology of lignin-based inks can be adjusted from soft to rigid, and even enables vertical printing which requires stiff and self-supporting features. The lignin-based inks contain less water (≈40 wt%) and exhibit a much denser, stiffer structure, resulting in a wet tensile strength of ≈30 MPa, compared to only ≈0.6 MPa for printed cellulose. In addition, the unique macromolecular structure of lignin also demonstrates significantly improved stability in water and under heat, as well as UV-blocking performance.
Assuntos
Tinta , Lignina , Celulose , Hidrogéis , Impressão TridimensionalRESUMO
Construction of porous organic polymers (POPs) with high surface areas, well-defined nanopores, and excellent stability remains extremely challenging because of the unmanageable reaction process. Until now, only a few reported POPs have Brunauer-Emmett-Teller (BET) surface areas (SBET ) exceeding 3000â m2 g-1 . Herein, we demonstrate a molecular expansion strategy to integrate high surface areas, large nanopore sizes, and outstanding stability into POPs. A series of hyper-crosslinked conjugated polymers (HCCPs) with exceptional porosity are synthesized through this strategy. Specially, HCCP-6 and HCCP-11 exhibit the highest surface areas (SBET >3000â m2 g-1 ) and excellent total pore volumes (up to 3.98â cm3 g-1 ) among these HCCPs. They present decent total CH4 storage capacities of 491 and 421â mg g-1 at 80â bar and 298â K, respectively. Meanwhile, they are highly stable in harsh environments. The facile and general molecular expansion strategy would lead to improved synthetic routes of POPs for desired functions.
RESUMO
To offset the environmental impact of platinum-group element (PGE) mining, recycling techniques are being explored. Porous organic polymers (POPs) have shown significant promise owing to their selectivity and ability to withstand harsh conditions. A series of pyridine-based POP nanotraps, POP-Py, POP-pNH2 -Py, and POP-oNH2 -Py, have been designed and systematically explored for the capture of palladium, one of the most utilized PGEs. All of the POP nanotraps demonstrated record uptakes and rapid capture, with the amino group shown to be vital in improving performance. Further testing on the POP nanotrap regeneration and selectivity found that POP-oNH2 -Py outperformed POP-pNH2 -Py. Single-crystal X-ray analysis indicated that POP-oNH2 -Py provided a stronger complex compared to POP-pNH2 -Py owing to the intramolecular hydrogen bonding between the amino group and coordinated chlorine molecules. These results demonstrate how slight modifications to adsorbents can maximize their performance.
RESUMO
The ability to efficiently convert CO2 into nanocarbons at low temperatures is highly desirable, as it would enable the environmentally benign utilization of greenhouse gases, yet this remains a considerable challenge. Herein, a one-step, ultrafast, and scalable strategy is demonstrated to efficiently convert CO2 into morphology-controlled nanocarbons at low temperatures. The conversion reactions between CO2 and LiH are achieved in less than 30 s at moderate conditions by introducing a very small amount of water, ball milling, or heating. Nanocarbons featuring wildly tunable morphology with characteristic dimensions ranging from nanoscale to macroscale are successfully synthesized by controlling the CO2 pressure and the synthesis routes. The gas blowing velocity and its distribution are revealed as the main reasons for the CO2 pressure and synthesis route dependent morphology and porosity of nanocarbons. Moreover, a two closed-loop reaction process including five-stage reactions is proposed for nanocarbons synthesis and LiH regeneration. The strategy provides a new opportunity for efficient and environmentally benign nanocarbons synthesis.
RESUMO
A cationic metal-organic framework (MOF), [Cu2 L(H2 O)2 ]â (NO3 )2 â 5.5 H2 Oâ (1) has been successfully synthesized from a zwitterionic ligand 1,1'-bis(3,5-dicarboxyphenyl)-4,4'-bipyridinium chlorine ([H4 L]Cl2 ). The framework of compound 1 contains classical {Cu2 (O2 C)4 } paddlewheels, and possesses typical nbo-type topology and two types of channels with sizes of 5.0 and 15.54â Å. Benefitting from the 3D cationic framework and high pore volume, compoundâ 1 shows interesting selective adsorption ability for anionic dyes. Such material can be successfully employed in a chromatographic column to efficiently separate mixed dyes of Fluorescein Sodium and Methylene Blue. In addition, compound 1 exhibits excellent Cr2 O72- removal capacity with maximum adsorption amount of 222.5â mg g-1 , which ranks among the higher Cr2 O72- adsorption amounts of MOF materials ever reported, based on ion-exchange. The strategy to construct cationic MOFs based on zwitterionic ligands will promote the development of functional porous materials for the capture and removal of anionic pollutant species from contaminated liquid.
RESUMO
Ionic porous organic polymers have attracted much attention due to their broad applications in catalysis, energy storage/conversion, proton conduction, etc. In this paper, an ionic porous organic polymer, CMP-PM-Me, was synthesized through post-synthetic modification of a pyrimidine-based conjugated microporous polymer, CMP-PM, which was constructed by the palladium catalyzed Sonogashira reaction of 1,3,5-triethynylbenzen and 2,5-dibromopyrimidine. These two polymers are porous with Brunauer-Emmett-Teller surface areas of 416 and 241â m2 g-1 for CMP-PM and CMP-PM-Me, respectively. Due to the cationic framework, CMP-PM-Me exhibits a much faster and more efficient adsorption performance to anionic dyes such as Congo red (CR) and methyl orange (MO) than that of CMP-PM with a neutral framework. The uptakes for CR are 400.0â mg g-1 for CMP-PM-Me and 344.8â mg g-1 for CMP-PM, respectively. Furthermore, CMP-PM-Me could quickly and drastically separate anionic dyes from the binary mixed solution of anionic and nonanionic dyes within a short time. This work not only enriches the family of ionic organic porous polymers and widens their synthetic utility, but also demonstrates their applications in the adsorption and separation of anionic dyes in water.
RESUMO
A new species of pachychilid freshwater gastropod, Sulcospira hunanensis sp. nov., is described from Hunan Province, China, based on morphological and molecular evidence. The new species is distinguished from its congeners by a combination of characters, including elongated shell with eight to nine whorls, spiral whorls with ribs, and stomach with outer and inner crescentic pads not connected to each other. Sulcospira hunanensis sp. nov. is the first confirmed report of this genus from Hunan Province, China. It is anticipated that further species will be found in this region, which currently remain unknown. Furthermore, based on morphological and molecular evidence, this study is the first record of Sulcospira tonkiniana in Guangxi Zhuang Autonomous Region, China, with Sulcospira krempfi supported as a synonym of Sulcospira tonkiniana.
Assuntos
Gastrópodes/anatomia & histologia , Gastrópodes/classificação , Distribuição Animal , Animais , China , Filogenia , Especificidade da EspécieRESUMO
A controllable and scalable strategy is developed to fabricate multiplexed plasmonic nanoparticle structures by mechanical scratching with AFM lithography, which exhibit multiplex plasmonic properties and surface-enhanced Raman scattering responses. It offers an intuitive way to explore the plasmonic effects on the performance of an organic light-emitting diode device integrating with multiplexed plasmonic nanostructures.
RESUMO
Temporal interference (TI) electric field brain stimulation is a novel neuromodulation technique that enables the non-invasive modulation of deep brain regions, but few advances about TI stimulation effectiveness and mechanisms have been reported. Conventional transcranial alternating current stimulation (tACS) can enhance motor skills, whether TI stimulation has an effect on motor skills in mice has not been elucidated. In the present study, TI stimulation was proved to stimulating noninvasively primary motor cortex (M1) of mice, and that TI stimulation with an envelope wave frequency of 20 Hz (Δ f = 20 Hz) once a day for 20 min for 7 consecutive days significantly improved the motor skills of mice. The mechanism of action may be related to regulating of neurotransmitter metabolism, increasing the expression of synapse-related proteins, promoting neurotransmitter release, increasing dendritic spine density, enhancing the number of synaptic vesicles and the thickness of postsynaptic dense material, and ultimately enhance neuronal excitability and plasticity. It is the first report about TI stimulation promoting motor skills of mice and describing its mechanisms.