Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 346: 140594, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914050

RESUMO

In this study, monoclinic BiPO4 nanorods were fabricated by one-pot solvothermal method. Its catalytic capability in photocatalytic ozonation process was tested by degradation and mineralization of sodium dodecyl benzene sulfonate (SDBS) solution. The results demonstrated that the TOC removal rate was dramatically improved to 90.0% at 75 min for UV/O3/BiPO4 process, which was 4.9 and 3.8 times more than that of UV/BiPO4 and O3. Moreover, the pseudo-first-order kinetic constant (0.337 min-1) and mineralization rate (90.0%) for SDBS degradation using BiPO4 in UV/O3 process were 1.6 and 1.3 times as great as that of conventional TiO2 photocatalyst (0.206 min-1, 67.3%). The influence of BiPO4 dosage, O3 concentration initial pH and coexisted ions on SDBS degradation in UV/O3/BiPO4 process were also investigated. The outcome of quenching studies illustrated both ·OH and h+ contributed prominently to SDBS degradation in UV/O3/BiPO4 process, implying that high valence band position of BiPO4 could promote the synergism between photocatalysis and ozonation. The degradation pathway of SBDS was proposed by combination of intermediates analysis and DFT calculation. Real carwash wastewater was chosen as typical surfactant containing wastewater to explore the practical application of UV/O3/BiPO4 technology. During 30 min, COD and LAS removal efficiency reached 59.7% and 70.6%, respectively. The quality indices of effluent could meet the requirements for reuse of carwash water in Water Quality Standard for Urban Miscellaneous Use in China. Energy consumption in the process was calculated as 13.9 kW h m-3, which was about 3.6 and 2.2 times less than that of UV/BiPO4 and O3 process, respectively. The results suggest that UV/O3/BiPO4 system has an application potential for surfactant containing wastewater treatment or recycle.


Assuntos
Nanotubos , Ozônio , Surfactantes Pulmonares , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Tensoativos , Poluentes Químicos da Água/análise , Ozônio/análise , Purificação da Água/métodos , Oxirredução
2.
Sci Total Environ ; 858(Pt 3): 160097, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368392

RESUMO

Single atomic Cu catalysts (SACs Cu@C) anchored by carbon skeleton and chlorine atom was synthesized by hydrolyzing Cu-MOFs and then pickled by aqua-regia to remove Cu nanoparticles (NPs Cu). Comparative characterizations revealed that SACs Cu@C was a hierarchically porous nanostructure and Cu dispersed uniformly throughout the carbon skeletons. With less active components, SACs Cu@C behaved better in activating PMS over NPs Cu@C on ibuprofen removal (91.3 % versus 30.2 % in 30 min). Two Cu coordination environments were found by EXAF and DFT calculation, including four-coordinated Cu with 4C atoms and six-coordinated Cu with 4Cu and 2Cl atoms. The obvious interfacial electron delivery between PMS and SACs Cu@C was found, which was enhanced by Cl atom. Cu(I)/Cu(II) redox cycle would donate electron to peroxy bond of PMS for generating OH, SO4- and O2-. But electron transferred in opposite direction when PMS bonded to Cu atom through its terminal oxygen atom in sulfate, which formed 1O2. IBP degradation proceeded through both radical and non-radical route. IBP degradation was inhibited with the presence of TBA, methanol and furfuryl alcohol but accelerated by p-BQ, which could accelerate OH generation. Two degradation pathways were deducted. This study provided a new insight into catalysts designed for PMS activation.


Assuntos
Carbono , Cloro , Ibuprofeno , Teoria da Densidade Funcional
3.
J Hazard Mater ; 460: 132357, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625293

RESUMO

Due to its low interfacial electron migration ability and highly hydrophilic, Fe-MCM-41 (FeM) had poor activity and stability during catalytic ozonation. To this end, the secondary metal Zn and Si-F group were introduced into the framework of FeM to create surface potential difference and hydrophobic sites. Comparative characterizations showed that there existed rich acid sites with great potential difference on F-Fe-Zn-MCM-41 (FFeZnM). Additionally, because of the existence of hydrophobic and electron-withdrawing Si-F unit, the electron migration ability, hydrophobicity and acidity of FFeZnM were enhanced. The greater O3 mass transfer was induced by Si-F group and O3 was directly activated at Fe and Zn Lewis acid sites into •OH, •O2- and 1O2. With •OH acting as main species, FFeZnM/O3 achieved the superior IBP removal (93.4%, 30 min) and TOC removal (46.6%, 120 min) over those of sole O3 and F-FeM/O3 processes, respectively. HCO3-, Cl-, NO3- and SO42- hindered IBP degradation by FFeZnM/O3, but high concentration humic acid (HA) exhibited promotion by forming HA-IBP complex. IBP degradation by FFeZnM/O3 was enhanced with tap water, river water, and effluent from the secondary sedimentation tank of the sewage plant acting as medium. This study proposed an innovative approach to catalyst design for catalytic ozonation.

4.
J Hazard Mater ; 428: 128222, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032960

RESUMO

N vacancies, hydrophobic sites and electron rich zone were simply regulated by doping F into g-C3N4 (CN) to accelerate photocatalytic ozonation of PFOA. Activity of F-CN was superior to that of CN, with 74.3% PFOA removal by F-CN/Vis/O3 but only 57.1% by CN/Vis/O3. Experimental results and theory simulations suggested that the photogenerated hole (hvb+) oxidation with the help of N vacancies was vital for PFOA degradation. N vacancies on both CN and F-CN would trap O atom of PFOA and seize electron from α -CF2 group, which made PFOA more easily to be oxidized. Doping of F narrowed band gap, lowered the valence band position and enhanced the oxidation potential of hvb+. The hydrophobic sites would accelerate the mass transfer of O3 and PFOA, enhance O3's single electron reduction with ecb- to generate hydroxyl radicals (•OH) and reduce the recombination of hvb+-ecb-. Under the joint function of hvb+, N vacancies and •OH, PFOA degradation in F-CN/Vis/O3 proceeded through the gradually shortening of perfluoroalky chain and loss of CF2 unit. The acute and chronic toxicity of generated short-chain perfluorocarboxylic acid toward fish, green algae daphnid were predicted by ECOSAR. And the toxicity change of solutions was examined by luminescent bacteria.


Assuntos
Radical Hidroxila , Ozônio , Elétrons , Oxirredução
5.
Int J Biol Macromol ; 210: 350-364, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537585

RESUMO

Clinical bone defects are often caused by high energy injury and are easily complicated by bacterial infection. An ideal bone repair material should promote bone regeneration and prevent bacterial infection. In this study, a multifunctional photothermal scaffold was developed: bone morphogenetic protein-2 (BMP-2)/polylactic-glycolic acid copolymers (PLGA) microspheres were prepared by a double emulsion method and then coated on the scaffolds prepared using a mixture of black phosphorus nanosheets (BPs) and PLGA, to form BMP-2@BPs scaffolds. The structural and photothermal properties of the composite scaffolds were characterized. The BMP-2@BPs scaffolds demonstrated good biocompatibility in both in vitro and in vivo experiments. The BMP-2@BPs scaffolds promoted osteogenic differentiation through a combination of BMP-2 release and upregulation of the expression of heat shock proteins by the radiation of near-infrared (NIR) light, which further upregulated the expression of osteogenesis-related genes. In addition, BPs demonstrated antibacterial effects under the mediation of NIR, which is beneficial for the prevention of clinical bacterial infections. In summary, the BMP-2@BPs scaffold was a multifunctional photothermal scaffold that could accelerate bone regeneration and act against bacteria. This study provides a new perspective for the treatment of bone defects and infectious bone defects.


Assuntos
Osteogênese , Alicerces Teciduais , Antibacterianos/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea , Glicolatos , Microesferas , Fósforo/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polímeros/farmacologia , Alicerces Teciduais/química
6.
Chemosphere ; 308(Pt 2): 136259, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057348

RESUMO

In this study, reduced graphene oxide (rGO) was used to fabricate a Z-scheme BiVO4-(rGO-Cu2O) photocatalyst for the degradation of Tetrabromobisphenol A (TBBPA) under sunlight irradiation. The photocatalyst was synthesized using a three-step method BiVO4-(rGO-Cu2O) photocatalyst with an rGO loading of 1% and (rGO-Cu2O) to BiVO4 ratio of 50% achieved the best degradation effect for TBBPA removal. Electron paramagnetic resonance spectroscopy (EPR) confirmed that the charge transfer path of BiVO4-(rGO-Cu2O) follows that of Z-scheme photocatalysts. Moreover, the addition of rGO increases the charge transfer efficiency. High performance liquid chromatography-mass spectrometry (HPLC-MS) was used to detect and analyze intermediate products, allowing the proposal of the main degradation pathway of TBBPA. Photogenerated electrons of BiVO4-(rGO-Cu2O) were then transferred into the conduction band of Cu2O. Cu2O is located in the surface layer, which has the most effective contact area with pollutants, and therefore has a good outcome for the photocatalytic reduction of TBBPA. Photogenerated electrons (e-) and hydroxyl radicals (∙OH) are the main factors affecting TBBPA degradation. The degradation process of TBBPA includes electron reduction debromination, hydroxylation, and ß-cleavage. In our work, BiVO4-(rGO-Cu2O) was successfully synthesized to degrade TBBPA; this study brings forth a novel approach for the degradation of halogenated organic pollutants using a Z-scheme photocatalytic composite.


Assuntos
Poluentes Ambientais , Luz Solar , Catálise , Grafite , Bifenil Polibromatos
7.
J Biomater Sci Polym Ed ; 32(2): 248-265, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32975477

RESUMO

Bone marrow mesenchymal stem cells (BMSCs), as seed cells, have played an important role in bone defect repair. However, efficiently amplifying and inducing BMSCs in vitro or vivo remains an urgent problem to be solved. Electrical stimulation has been beneficial to the proliferation and differentiation of BMSCs, but current electrical stimulation methods have a critical disadvantage in that they usually burn the skin. g-C3N4/rGO, a new photosensitive material, can produce photocurrent under natural light irradiation, thus reducing energy consumption. Our purpose was to explore whether this photocurrent can promote the proliferation and differentiation of BMSCs. g-C3N4/rGO synthesised under high temperature and pressure had negligible cytotoxicity as confirmed by methyl thiazolyl tetrazolium to BMSCs. Better osteogenesis was found in the blue light material group than in the light-shielding material group, exhibited by alizarin red staining, alkaline phosphatase activity, Western-Blot, and RT-qPCR. Animal experiments showed that the bone repair potential of the material group was significantly higher than that of the non-material group. Overall, we conclude that g-C3N4/rGO is a new non-toxic photosensitive material which can rapidly induce BMSCs into osteoblasts, accelerating bone regeneration and providing us with a feasible method of rapid bone repair.


Assuntos
Células-Tronco Mesenquimais , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Grafite , Osteogênese
8.
J Hazard Mater ; 280: 531-5, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25215654

RESUMO

Graphitic carbon nitride (g-C3N4) was employed as the active photocatalyst in the photocatalytic ozonation coupling system in the present study. g-C3N4 was prepared by directly heating thiourea in air at 550°C. XRD, FT-IR, UV-vis was used to characterize the structure and optical property. Oxalic acid and bisphenol A were selected as model substances for photocatalytic ozonation reactions to evaluate the catalytic ability of g-C3N4 (g-C3N4/Vis/O3). The results showed that the degradation ratio of oxalic acid with g-C3N4/Vis/O3 was 65.2% higher than the sum of ratio when it was individually decomposed by g-C3N4/Vis and O3. The TOC removal of biphenol A with g-C3N4/Vis/O3 was 2.17 times as great as the sum of the ratio when using g-C3N4/Vis and O3. This improvement was attributed to the enhanced synergistic effect between photocatalysis and ozonation by g-C3N4. Under visible light irradiation, the photo-generated electrons produced on g-C3N4 facilitated the electrons transfer owing to the more negative conduction band potential (-1.3V versus NHE). It meant that the photo-generated electrons could be trapped by ozone and reaction with it more easily. Subsequently, the yield of hydroxyl radicals was improved so as to enhance the organics degradation efficiency. This work indicated that metal-free g-C3N4 could be an excellent catalyst for mineralization of organic compounds in waste control.


Assuntos
Nitrilas/síntese química , Ozônio/química , Fotólise , Poluentes Químicos da Água/química , Compostos Benzidrílicos , Luz , Ácido Oxálico , Fenóis
9.
Environ Sci Technol ; 44(9): 3481-5, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20387884

RESUMO

Inverse TiO(2) opal photonic crystal coupled TiO(2)/poly(3-hexylthiophene) (bilayer TiO(2)/P3HT) was structured on FTO substrate for efficient photocatalysis under visible light irradiation (lambda > 400 nm). We expected that the photocatalytic capability of this hybrid photocatalyst could be enhanced by the efficient visible light absorption owing to the photonic crystal structure and effective charge separation owing to the unique heterojunction built between TiO(2) and P3HT. The bilayer TiO(2)/P3HT photocatalyst was prepared first by depositing inverse TiO(2) opal on FTO substrate via replicating polystyrene opal, followed by spin coating a layer of TiO(2) nanoparticles on the inverse TiO(2) opal. The as prepared bilayer TiO(2) was modified by P3HT via dipping method. Environmental scanning electron microscopy (ESEM) images demonstrated that the as prepared photocatalyst was composed of inverse TiO(2) opal layer and TiO(2) nanoparticles layer. The UV-vis diffuse reflectance spectra showed that the optical absorption for bilayer TiO(2)/P3HT was more intensive than for pristine TiO(2) nanoparticle/P3HT (NP-TiO(2)/P3HT) in the range of 400-650 nm. The enhanced generation of photocurrent under visible light irradiation (lambda > 400 nm) was observed using the bilayer TiO(2)/P3HT. The results of photocatalytic experiments under visible light irradiation revealed that the pseudofirst-order kinetic constant of photocatalytic degradation of methylene blue using the bilayer TiO(2)/P3HT was 2.08 times as great as that using NP-TiO(2)/P3HT, showing the advantage of the unique structure in the bilayer TiO(2)/P3HT for efficient photocatalysis.


Assuntos
Catálise , Fotoquímica/métodos , Fótons , Titânio/química , Cristalização , Monitoramento Ambiental/métodos , Cinética , Luz , Microscopia Eletrônica de Varredura/métodos , Nanopartículas/química , Nanotecnologia/métodos , Óptica e Fotônica , Poliestirenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA