Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 28(19): 3271-3275, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30131242

RESUMO

Tetrahydroquinoline and tetrahydroisoquinoline derivatives containing 2-phenyl-5-furan moiety were designed and synthesized as phosphodiesterase type 4 (PDE4) inhibitors. The bioassay results showed that title compounds showed good inhibitory activity against PDE4B and blockade of LPS (lipopolysaccharide) induced TNF-α release, which also exhibited considerable in vivo activity in animal models of asthma/COPD (chronic obstructive pulmonary disease) and sepsis induced by LPS. The bioactivity of compounds containing tetrahydroquinoline (series 4) was higher than that of tetrahydroisoquinoline derivatives (series 3). Compound 4 m with 4-methoxybenzene moiety exhibited the best potential selective activity against PDE4B. The primary structure-activity relationship study and docking results showed that the tetrahydroquinoline moiety of compound 4 m played a key role to form hydrogen bonds and π-π stacking interaction with PDE4B protein while the rest part of the molecule extended into the catalytic domain to block the access of cAMP and formed the foundation for inhibition of PDE4B. Based on LPS induced sepsis model for the measurement of TNF-α inhibition in Swiss Albino mice and neutrophilia inhibition for asthma and COPD in Sprague Dawley rats with the potential molecules, compound 4 m would be great promise as a hit inhibitor in the future study.


Assuntos
Inibidores da Fosfodiesterase 4/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/farmacologia , Animais , Domínio Catalítico , Camundongos , Inibidores da Fosfodiesterase 4/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
2.
Eur J Med Chem ; 151: 546-556, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29656198

RESUMO

Multidrug resistance (MDR) is a tendency in which cells become resistant to structurally and mechanistically unrelated drugs, which is mediated by P-glycoprotein (P-gp). It is one of the noteworthy problems in cancer therapy. As one of the most important drugs in cancer therapy, doxorubicin has not good effectiveness if used independently. So targeting the P-gp protein is one of the key points to solve the MDR. Three series of furan derivatives containing tetrahydroquinoline or tetrahydroisoquinoline were designed and synthesized as P-gp inhibitors in this paper. Compound 5m containing 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline possessed good potency against P-gp (EC50 = 0.89 ±â€¯0.11 µM). The preliminary structure-activity relationship and docking studies demonstrated that compound 5m would be great promise as a lead compound for further study. Most worthy of mention is drug combination of doxorubicin and 5m displayed antiproliferative effect of about 97.8%. This study provides highlighted P-gp inhibitor for withstanding malignant tumor cell with multidrug resistance especially doxorubicin resistance setting the basis for further studies.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Furanos/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Furanos/síntese química , Furanos/química , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA