RESUMO
North Carolina (NC) is the fifth largest producer of bell pepper (Capsicum annuum) in the US with an estimated 2,400 acres in production (NASS-USDA, 2022). A survey of bacterial diseases of peppers was initiated in 2020 after numerous bacterial spot outbreaks were reported in NC. Bacterial spot is caused by a complex of four Xanthomonads: X. euvesicatoria, X. vesicatoria, X. perforans, and X. hortorum pv. gardneri (Larrahondo-Rodríguez et al., 2022). If not preemptively managed, bacterial spot can cause up to 40% yield loss (Kousik and Ritchie, 1998). During the 2020 and 2021 growing seasons, 103 yellow mucoid colonies were isolated from plants representing 51 pepper cultivars symptomatic of bacterial spot, i.e., water-soaked leaf lesions that become necrotic spots on leaves and fruits across 22 commercial fields in NC following published methods (Klein-Gordon et al., 2021). All colonies were characterized to species using the qPCR species-specific primers and probes described by Strayer et al. 2016. Of the 103 colonies, 12 isolates tested positive for X. perforans. To confirm qPCR results, a Multi-Locus Sequence Analysis (MLSA) was run using fusA, gapA, gltA, gyrB, and lacF following previously described methods (Almeida et al., 2010) on three representative isolates: AHX61, collected in September 2020 from a field with 20% disease severity in Wake County on cv. Canary Bell; AHX261, collected in July 2021 from a field with 50% disease severity in Sampson County on Jalapeño; and AHX426, collected in August 2021 from a field with 50% disease severity in Dublin County on Jalapeño. All gene sequences were deposited to NCBI (GenBank Accessions: OQ799538-OQ799552) and compared to those from X. euvesicatoria, X. hortorum pv. gardneri, X. perforans, and X. vesicatoria type strains (Almeida et al., 2010). The MLSA showed AHX61, AHX261, and AHX426 cluster with X. perforans ICMP16690T, sharing 99-100% nucleotide similarity. Koch's postulates were performed with the three strains, Xp1484T [ X. perforans type strain, (Wilson 1987)], and water as a negative control. Three 10-week-old bell pepper plants (cv. Early Cal Wonder) were dip-inoculated in 600 mL of a bacterial suspension at an OD600 of 0.3 (~5x108 CFU/mL) and 0.04% Silwet L-77 per strain or water. All 18 plants were individually incubated in a plastic bag for 48 h post-inoculation at 28°C, 80% relative humidity, and 14 h:10 h light-dark cycle in a growth chamber, after which plastic bags were removed. Water-soaking and necrotic spots characteristic of bacterial spot were first observed at six days post-inoculation (dpi). At 14 dpi, symptomatic leaves were removed from treated plants to attempt pathogen re-isolation. Yellow mucoid colonies similar in morphology to those originally inoculated were recovered from all plants and confirmed to be X. perforans through sequencing; no isolates were recovered from water-treated plants. To our knowledge, this is the first time X. perforans is isolated in commercial bell pepper and specialty pepper fields in the state. This is an indication that the Xanthomonas population on peppers in the state is more diverse than previously reported and that pathogen populations will require monitoring for possible species shifts for this crop in NC.
RESUMO
Bacterial spot of tomato (BST), predominantly caused by Xanthomonas perforans (Xp) in Florida, is one of the most devastating diseases in hot, humid environments. Bacterial resistance to copper-based bactericides and antibiotics makes disease management extremely challenging. This necessitates alternative solutions to manage the disease. In this study, we used two novel hybrid copper and magnesium nanomaterials noted as magnesium double-coated (Mg-Db) and magnesium-copper (Mg-Cu), to manage BST. In in vitro experiments, no viable cells were recovered following 4 h exposure to 500 µg/ml of both Mg-Db and Mg-Cu, while 100 and 200 µg/ml required 24 h of exposure for complete inhibition. In viability assay using live/dead cell straining method and epifluorescence microscopy, copper tolerant Xp cells were killed within 4 h by both Mg-Cu and Mg-Db nanomaterials at 500 µg/ml, but not by copper hydroxide (Kocide 3000). In the greenhouse, Mg-Db and Mg-Cu at 100-500 µg/ml significantly reduced BST severity compared to micron-sized commercial Cu bactericide Kocide 3000 and the growers' standard (copper hydroxide + mancozeb) (P < 0.05). In field studies, Mg-Db and Mg-Cu nanomaterials significantly reduced disease severity in two out for field trials. Mg-Db at 500 µg/ml reduced BST severity by 34% compared to the non-treated control without affecting yield in Fall, 2020. The use of hybrid nanomaterials at the highest concentrations (500 µg/ml) used in the field experiments can reduce copper use by 90% compared to the growers' standard. In addition, there was no phytotoxicity observed with the use of hybrid nanomaterials in the field. These results suggest the potential of novel magnesium-copper based hybrid nanomaterials to manage copper-tolerant bacterial pathogens.
RESUMO
Bacterial leaf pustule (BLP), caused by Xanthornonas axonopodis pv. glycines (Xag), is a worldwide disease of soybean, particularly in warm and humid regions. To date, little is known about the underlying molecular mechanisms of BLP resistance. The only single recessive resistance gene rxp has not been functionally identified yet, even though the genotypes carrying the gene have been widely used for BLP resistance breeding. Using a linkage mapping in a recombinant inbred line (RIL) population against the Xag strain Chinese C5, we identified that quantitative trait locus (QTL) qrxp-17-2 accounted for 74.33% of the total phenotypic variations. We also identified two minor QTLs, qrxp-05-1 and qrxp-17-1, that accounted for 7.26% and 22.26% of the total phenotypic variations, respectively, for the first time. Using a genome-wide association study (GWAS) in 476 cultivars of a soybean breeding germplasm population, we identified a total of 38 quantitative trait nucleotides (QTNs) on chromosomes (Chr) 5, 7, 8, 9,15, 17, 19, and 20 under artificial infection with C5, and 34 QTNs on Chr 4, 5, 6, 9, 13, 16, 17, 18, and 20 under natural morbidity condition. Taken together, three QTLs and 11 stable QTNs were detected in both linkage mapping and GWAS analysis, and located in three genomic regions with the major genomic region containing qrxp_17_2. Real-time RT-PCR analysis of the relative expression levels of five potential candidate genes in the resistant soybean cultivar W82 following Xag treatment showed that of Glyma.17G086300, which is located in qrxp-17-2, significantly increased in W82 at 24 and 72 h post-inoculation (hpi) when compared to that in the susceptible cultivar Jack. These results indicate that Glyma.17G086300 is a potential candidate gene for rxp and the QTLs and QTNs identified in this study will be useful for marker development for the breeding of Xag-resistant soybean cultivars.
Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Glycine max/genética , Doenças das Plantas/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Fenótipo , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genéticaRESUMO
Copper (Cu) is the most extensively used bactericide worldwide in many agricultural production systems. However, intensive application of Cu bactericide have increased the selection pressure toward Cu-tolerant pathogens, including Xanthomonas perforans, the causal agent of tomato bacterial spot. However, alternatives for Cu bactericides are limited and have many drawbacks including plant damage and inconsistent effectiveness under field conditions. Also, potential ecological risk on nontarget organisms exposed to field runoff containing Cu is high. However, due to lack of alternatives for Cu, it is still widely used in tomato and other crops around the world in both conventional and organic production systems. In this study, a Cu-tolerant X. perforans strain GEV485, which can tolerate eight tested commercial Cu bactericides, was used in all the field trials to evaluate the efficacy of MgO nanomaterial. Four field experiments were conducted to evaluate the impact of intensive application of MgO nanomaterial on tomato bacterial spot disease severity, and one field experiment was conducted to study the impact of soil accumulation of total and bioavailable Cu, Mg, Mn, and Zn. In the first two field experiments, twice-weekly applications of 200 µg/mL MgO significantly reduced disease severity by 29-38% less in comparison to a conventional Cu bactericide Kocide 3000 and 19-30% less in comparison to the water control applied at the same frequency (p = 0.05). The disease severity on MgO twice-weekly was 12-32% less than Kocide 3000 + Mancozeb treatment. Single weekly applications of MgO had 13-19% higher disease severity than twice weekly application of MgO. In the second set of two field trials, twice-weekly applications of MgO at 1000 µg/mL significantly reduced disease severity by 32-40% in comparison to water control applied at the same frequency (p = 0.05). There was no negative yield impact in any of the trials. The third field experiment demonstrated that application of MgO did not result in significant accumulation of total and bioavailable Mg, Mn, Cu, or Zn in the root-associated soil and in soil farther away from the production bed compared to the water control. However, Cu bactericide contributed to significantly higher Mn, Cu, and Zn accumulation in the soil compared to water control (p = 0.05). This study demonstrates that MgO nanomaterial could be an alternative for Cu bactericide and have potential in reducing risks associated with development of tolerant strains and for reducing Cu load in the environment.
Assuntos
Nanoestruturas , Poluentes do Solo , Solanum lycopersicum , Cobre/toxicidade , Gerenciamento Clínico , Óxido de Magnésio , Doenças das Plantas , Solo , XanthomonasRESUMO
OBJECTIVE: Aberrant glycosylation affects many cellular properties in cancers. The core 1 ß1,3-galactosyltransferase (C1GALT1), an enzyme that controls the formation of mucin-type O-glycans, has been reported to regulate hepatocellular and mammary carcinogenesis. This study aimed to explore the role of C1GALT1 in ovarian cancer. METHODS: C1GALT1 expression was assessed in a public database based on microarray data from 1287 ovarian cancer patients and ovarian cancerous tissues. Lectin blotting and flow cytometry analysis were conducted to detect changes in O-glycans on ovarian cancer cells. Effects of C1GALT1 on cell growth, migration, and sphere formation were analyzed in C1GALT1 knockdown or overexpressing ovarian cancer cells in vitro. Expression of cancer stemness-related genes was analyzed by quantitative reverse transcription polymerase chain reaction. RESULTS: High C1GALT1 expression shows a trend toward association with poor survival in ovarian cancer patients. C1GALT1 modifies O-glycan expression on surfaces and glycoproteins of ovarian cancer cells. Knockdown of C1GALT1 decreased cell growth, migration, and sphere formation of ES-2 and OVTW59-p4 cells. Conversely, overexpression of C1GALT1 promoted such malignant properties of SKOV3 cells. Furthermore, C1GALT1 regulated the expression of several cancer stemness-related genes, including CD133, CD24, Oct4, Nanog, and SNAI2, in ovarian cancer cells. CONCLUSIONS: C1GALT1 modifies O-glycan expression and enhances malignant behaviors in ovarian cancer cells, suggesting that C1GALT1 plays a role in the pathogenesis of ovarian cancer and targeting C1GALT1 could be a promising approach for ovarian cancer therapy.
Assuntos
Galactosiltransferases/biossíntese , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Progressão da Doença , Feminino , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Técnicas de Silenciamento de Genes , Glicoproteínas/biossíntese , Humanos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/metabolismo , Polissacarídeos/biossíntese , Prognóstico , Análise Serial de TecidosRESUMO
IMPORTANCE: T6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here, Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* in X. perforans AL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria.
Assuntos
Sistemas de Secreção Tipo VI , Xanthomonas , Sistemas de Secreção Tipo VI/genética , Virulência/genética , Xanthomonas/genética , Xanthomonas/metabolismo , Perfilação da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Beta1,4-galactosyltransferases (B4GALTs) play a crucial role in several diseases, including cancer. B4GALT1 is highly expressed in the liver, and patients with mutations in B4GALT1 exhibit hepatopathy. However, the role of B4GALT1 in liver cancer remains unclear. Here, we found that B4GALT1 was significantly downregulated in hepatocellular carcinoma (HCC) tissue compared with the adjacent liver tissue, and low B4GALT1 expression was associated with vascular invasion and poor overall survival in patients with HCC. Additionally, silencing or loss of B4GALT1 enhanced HCC cell migration and invasion in vitro and promoted lung metastasis of HCC in NOD/SCID mice. Moreover, B4GALT1 knockdown or knockout increased cell adhesion to laminin, whereas B4GALT1 overexpression decreased the adhesion. Through a mass spectrometry-based approach and Griffonia simplicifolia lectin II (GSL-II) pull-down assays, we identified integrins α6 and ß1 as the main protein substrates of B4GALT1 and their N-glycans were modified by B4GALT1. Further, the increased cell migration and invasion induced by B4GALT1 knockdown or knockout were significantly reversed using a blocking antibody against integrin α6 or integrin ß1. These results suggest that B4GALT1 downregulation alters N-glycosylation and enhances the laminin-binding activity of integrin α6 and integrin ß1 to promote invasiveness of HCC cells. Our findings provide novel insights into the role of B4GALT1 in HCC metastasis and highlight targeting the laminin-integrin axis as a potential therapeutic strategy for HCC with low B4GALT1 expression.
RESUMO
GalNAc-type O-glycosylation and its initiating GalNAc transferases (GALNTs) play crucial roles in a wide range of cellular behaviors. Among 20 GALNT members, GALNT2 is consistently associated with poor survival of patients with colorectal cancer in public databases. However, its clinicopathological significance in colorectal cancer remains unclear. In this study, immunohistochemistry showed that GALNT2 was overexpressed in colorectal tumors compared with the adjacent nontumor tissues. GALNT2 overexpression was associated with poor survival of colorectal cancer patients. Forced expression of GALNT2 promoted migration and invasion as well as peritoneal metastasis of colorectal cancer cells. In contrast, GALNT2 knockdown with siRNAs or knockout with CRISPR/Cas9 system suppressed these malignant properties. Interestingly, we found that GALNT2 modified O-glycans on AXL and determined AXL levels via the proteasome-dependent pathway. In addition, the GALNT2-promoted invasiveness was significantly reversed by AXL siRNAs. These findings suggest that GALNT2 promotes colorectal cancer invasion at least partly through AXL.
Assuntos
Neoplasias Colorretais , N-Acetilgalactosaminiltransferases , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Glicosilação , Invasividade Neoplásica , N-Acetilgalactosaminiltransferases/genética , Polipeptídeo N-AcetilgalactosaminiltransferaseRESUMO
Bacterial spot of tomato is among the most economically relevant diseases affecting tomato plants globally. In previous studies, non-formulated magnesium oxide nanoparticles (nano-MgOs) significantly reduced the disease severity in greenhouse and field conditions. However, the aggregation of nano-MgO in liquid suspension makes it challenging to use in field applications. Therefore, we formulated two novel MgO nanomaterials (SgMg #3 and SgMg #2.5) and one MgOH2 nanomaterial (SgMc) and evaluated their physical characteristics, antibacterial properties, and disease reduction abilities. Among the three Mg nanomaterials, SgMc showed the highest efficacy against copper-tolerant strains of Xanthomonas perforans in vitro, and provided disease reduction in the greenhouse experiments compared with commercial Cu bactericide and an untreated control. However, SgMc was not consistently effective in field conditions. To determine the cause of its inconsistent efficacy in different environments, we monitored particle size, zeta potential, morphology, and crystallinity for all three formulated materials and nano-MgOs. The MgO particle size was determined by the scanning electron microscopy (SEM) and dynamic light scattering (DLS) techniques. An X-ray diffraction (XRD) study confirmed a change in the crystallinity of MgO from a periclase to an Mg(OH)2 brucite crystal structure. As a result, the bactericidal activity correlated with the high crystallinity present in nano-MgOs and SgMc, while the inconsistent antimicrobial potency of SgMg #3 and SgMg #2.5 might have been related to loss of crystallinity. Future studies are needed to determine which specific variables impair the performance of these nanomaterials in the field compared to under greenhouse conditions. Although SgMc did not lead to significant disease severity reduction in the field, it still has the potential to act as an alternative to Cu against bacterial spot disease in tomato transplant production.
RESUMO
Computational tool-assisted primer design for real-time reverse transcription (RT) PCR (qPCR) analysis largely ignores the sequence similarities between sequences of homologous genes in a plant genome. It can lead to false confidence in the quality of the designed primers, which sometimes results in skipping the optimization steps for qPCR. However, the optimization of qPCR parameters plays an essential role in the efficiency, specificity, and sensitivity of each gene's primers. Here, we proposed an optimized approach to sequentially optimizing primer sequences, annealing temperatures, primer concentrations, and cDNA concentration range for each reference (and target) gene. Our approach started with a sequence-specific primer design that should be based on the single-nucleotide polymorphisms (SNPs) present in all the homologous sequences for each of the reference (and target) genes under study. By combining the efficiency calibrated and standard curve methods with the 2-ΔΔCt method, the standard cDNA concentration curve with a logarithmic scale was obtained for each primer pair for each gene. As a result, an R2 ≥ 0.9999 and the efficiency (E) = 100 ± 5% should be achieved for the best primer pair of each gene, which serve as the prerequisite for using the 2-ΔΔCt method for data analysis. We applied our newly developed approach to identify the best reference genes in different tissues and at various inflorescence developmental stages of Tripidium ravennae, an ornamental and biomass grass, and validated their utility under varying abiotic stress conditions. We also applied this approach to test the expression stability of six reference genes in soybean under biotic stress treatment with Xanthomonas axonopodis pv. glycines (Xag). Thus, these case studies demonstrated the effectiveness of our optimized protocol for qPCR analysis.
RESUMO
Pancreatic adenocarcinoma (PDAC) is a leading cause of cancer-related death. Altered glycosylation contributes to tumor progression and chemoresistance in many cancers. C1GALT1 is the key enzyme controlling the elongation of GalNAc-type O-glycosylation. Here we showed that C1GALT1 was overexpressed in 85% (107/126) of PDAC tumors compared with adjacent non-tumor tissues. High expression of C1GALT1 was associated with poor disease-free and overall survival (n = 99). C1GALT1 knockdown using siRNA suppressed cell viability, migration, and invasion as well as increased gemcitabine sensitivity in PDAC cells. In contrast, C1GALT1 overexpression enhanced cell migration and invasion. In subcutaneous and pancreatic orthotopic injection models, C1GALT1 knockdown decreased tumor growth and metastasis of PDAC cells in NOD/SCID mice. Mechanistically, C1GALT1 knockdown dramatically suppressed cell-extracellular matrix (ECM) adhesion, which was associated with decreased phosphorylation of FAK at Y397/Y925 and changes in O-glycans on integrins including the ß1, αv, and α5 subunits. Using functional blocking antibodies, we identified integrin αv as a critical factor in C1GALT1-mediated invasiveness of PDAC cells. In conclusion, this study not only reveals that C1GALT1 could be a potential therapeutic target for PDAC but also provides novel insights into the role of O-glycosylation in the α subunits of integrins.
Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Galactosiltransferases/genética , Integrina alfaV/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologiaRESUMO
The development of bacterial tolerance against pesticides poses a serious threat to the sustainability of food production. Widespread use of copper (Cu)-based products for plant disease management has led to the emergence of copper-tolerant pathogens such as Xanthomonas perforans (X. perforans) strains in Florida, which is very destructive to the tomato (Solanum lycopersicum) industry. In this study, we report a hybrid nanoparticle (NP)-based system, coined Locally Systemic Pesticide (LSP), which has been designed for improved efficacy compared to conventional Cu-based bactericides against Cu-tolerant X. perforans. The silica core-shell structure of LSP particles makes it possible to host ultra-small Cu NPs (<10 nm) and quaternary ammonium (Quat) molecules on the shell. The morphology, release of Cu and Quat, and subsequent in vitro antimicrobial properties were characterized for LSP NPs with core diameters from 50 to 600 nm. A concentration of 4 µg mL-1 (Cu): 1 µg mL-1 (Quat) was found to be sufficient to inhibit the growth of Cu-tolerant X. perforans compared to 100 µg mL-1 (metallic Cu) required with standard Kocide 3000. Wetting properties of LSP exhibited contact angles below 60°, which constitutes a significant improvement from the 90° and 85° observed with water and Kocide 3000, respectively. The design was also found to provide slow Cu release to the leaves upon water washes, and to mitigate the phytotoxicity of water-soluble Cu and Quat agents. With Cu and Quat bound to the LSP silica core-shell structure, no sign of phytotoxicity was observed even at 1000 µg mL-1 (Cu). In greenhouse and field experiments, LSP formulations significantly reduced the severity of bacterial spot disease compared to the water control. Overall, the study highlights the potential of using LSP particles as a candidate for managing tomato bacterial spot disease and beyond.
RESUMO
Mucins are heavily glycosylated proteins that play critical roles in the pathogenesis of tumour malignancies. Pancreatic ductal adenocarcinoma (PDAC) is characterised by the aberrant expression of mucins. However, the role of mucin (MUC) 20 in PDAC remains unclear. PDAC is usually surrounded by a dense fibrotic stroma consisting of an extracellular matrix and pancreatic stellate cells (PSCs). The stroma creates a nutrient-deprived, hypoxic, and acidic microenvironment, and promotes the malignant behaviours of PDAC cells. In this study, immunohistochemical staining demonstrated that high MUC20 expression correlated with poor progression-free survival and high local recurrence rate of PDAC patients (n = 61). The expression of MUC20 was induced by serum deprivation, hypoxia, and acidic pH in PDAC cells. MUC20 knockdown with siRNA decreased cell viability, as well as migration and invasion induced by PSCs in HPAC and HPAF-II cells. In intraperitoneal, subcutaneous, and orthotopic injection models, MUC20 knockdown decreased tumour growth in immunodeficient mice. Phospho-RTK array and western blot analysis indicated that MUC20 knockdown decreased HGF-mediated phosphorylation of MET in PDAC cells. Moreover, HGF-induced malignant phenotypes could be suppressed by MUC20 knockdown. Co-immunoprecipitation revealed the physical association of MUC20 and MET. These findings suggest that MUC20 knockdown suppresses the malignant phenotypes of PDAC cells at least partially through the inhibition of the HGF/MET pathway and that MUC20 could act as a potential therapeutic target.