RESUMO
BACKGROUND: Polymorphisms in susceptibility genes are a major risk factor for the development of asthma. Understanding these genetic variants helps elucidate asthma's pathogenesis, predict its onset, expedite antiasthma medication development, and achieve precise targeted individualized treatment. This study developed a test kit based on susceptibility genes for predicting asthma in Chinese children. METHODS: The present study constructed a VariantPro Targeted Library Preparation System with 72 single nucleotide polymorphism (SNP) loci associated with asthma from the ClinVar, OMIM, and SNPedia databases. These SNP loci were detected in the peripheral blood of 499 children with asthma and 500 healthy children. Significant differences were discovered for seven SNP loci. Simultaneously, whole exome sequencing of 46 children with asthma and 50 healthy children identified eight SNP loci with significant differences. The 15 SNP loci identified from Chinese children with asthma were validated in an independent population of 97 children with asthma and 93 healthy children by conducting multiplex polymerase chain reaction (PCR)-next-generation sequencing genotyping. RESULTS: Four loci (rs12422149, rs7216389, rs4065275, and rs41453444) were identified, and a single-tube multifluorescent qPCR (real-time quantitative PCR) test kit was developed using these four SNP loci. The kit was tested on 269 children with asthma and 724 children with bronchopneumonia. CONCLUSIONS: We identified four loci as susceptibility genes and developed a quantitative PCR test kit for predicting asthma development in Chinese children.
Assuntos
Asma , Sequenciamento do Exoma , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Asma/genética , Asma/diagnóstico , Estudos de Casos e Controles , China/epidemiologia , Bases de Dados Genéticas , População do Leste Asiático/genética , Sequenciamento do Exoma/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
Allergen component products, such as recombinant proteins and epitope peptides of allergic components, are used as an adjunct to allergen-specific immunotherapy. We characterized a novel allergen, Tyr p 31, from Tyrophagus putrescentiae, a common allergenic mite. T. putrescentiae total RNA was amplified to Tyr p 31-encoding cDNA, which was inserted into pET28a(+). pET28a(+)-Tyr p 31 was then transformed into Rosetta 2 (DE3) pLysS cells and expressed under isopropyl ß-D-thiogalactoside induction. Next, we visualized Tyr p 31 through sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blotting based on its theoretical molecular weight. Recombinant Tyr p 31 (rTyr p 31) was purified, and its secondary structure was noted to comprise α-helices, antiparallel coils, ß-turns, parallel coils, and random coils. Our enzyme-linked immunosorbent assay and Western blotting results for T. putrescentiae-positive sera from children with allergic disorders demonstrated rTyr p 31-specific IgE-positivity rates of 72.41 % and 85.7 %, respectively. In BEAS-2B cells, rTyr p 31 increased IL-6 and IL-8 expression; furthermore, BEAS-2B cells treated with 30 µg/mL rTyr p 31 demonstrated 100 upregulated and 12 downregulated genes. In summary, we identified Tyr p 31, a novel T. putrescentiae allergen component, and noted rTyr p 31 to have a high IgE-binding rate and strong immunogenicity.
Assuntos
Alérgenos , Hipersensibilidade , Criança , Humanos , Alérgenos/química , Imunoglobulina E , Proteínas Recombinantes/genética , Monofenol Mono-Oxigenase , TirosinaRESUMO
Blomia tropicalis is an important species of allergenic mite. Structurally related cross-reactive allergens are involved in pathogenesis of clinical symptoms. The present study focused on recombinant allergen rBlo t 13 from B. tropicalis, including investigation of its structure, immunological properties, IgE-mediated cross-reactivity. In this work, the prokaryotic expression plasmids pET-28(a)-Blo t 13, pET-28(a)-Der f 13, and pET-28(a)-Tyr p 13 were constructed, transformed into E. coli Rosetta (DE3) pLysS, and purified by nickel affinity chromatography, respectively. By using ELISA, the IgE-binding rates were detected for rBlo t 13 and its epitope peptides, as well as the cross-reactivity among rBlo t 13, rDer f 13, and rTyr p 13. The tertiary structure of rBlo t 13 was resolved using X-ray diffraction at 2.0 Å resolution. Using IgE-ELISA, the IgE binding rate of rBlo t 13 was 60 % with Blomia tropicalis-positive sera. In the experiments of ELISA for cross-reactivity with rBlo t 13 on solid phase, the inhibition rates were 65 %, 57 % and 63 % for rBlo t 13, rDer f 13, and rTyr p 13, respectively. The structure of Blo t 13 protein contains a ß-barrel structure which is composed of 10 ß strands and has 2 α helices at the end of the barrel. Comparison of the tertiary structures of rBlo t 13, rDer f 13, and rTyr p 13 revealed that the ß-barrel structure is highly conserved, consistent with the alignment of amino acid sequences. We obtained the recombinant protein rBlo t 13, demonstrated its cross-reactivity with Der f 13 and Tyr p 13 due to their structural similarity.
Assuntos
Alérgenos , Ácaros , Animais , Escherichia coli/genética , Reações Cruzadas , Imunoglobulina ERESUMO
Background: Genome data have been used to find novel allergen from house dust mites. Here, we aim to construct a chromosome-level genome assembly of Dermatophagoides farinae, a common allergenic mite species. Methods: We achieved a chromosome-level assembly of D. farinae's genome by integrating PacBio single-molecule real-time sequencing, Illumina paired-end sequencing, and Hi-C technology, followed by annotating allergens and mapping them to specific chromosomes. Results: A 62.43 Mb genome was assembled with a 0.52% heterozygosity rate and a 36.11 Merqury-estimated quality value. The assembled genome represents 92.1% completeness benchmarking universal single-copy orthologs with a scaffold N50 value of 7.11 Mb. Hi-C scaffolding of the genome resulted in construction of 10 pseudochromosomes. The genome comprises 13.01% (7.66 Mb) repetitive sequences and predicts 10,709 protein-coding genes, 96.57% of which are functionally annotated. Moreover, we identified and located 36 allergen groups on specific chromosomes, including allergens Der f 1, Der f 2, Der f 23, Der f 4, Der f 5, Der f 7, and Der f 21 located on chromosomes 2, 1, 7, 3, 4, 6, and 4, respectively. Conclusion: This comprehensive genomic data provides valuable insights into mite biology and evolutionary adaptations, potentially advancing D. farinae allergy research and treatment strategies.
RESUMO
Systemic immune status influences the elimination of tumor cells. However, it remains unclear how chronic inflammation in allergic diseases affects the tumor microenvironment and tumorigenesis. To investigate tumor progression in a state of heightened allergic inflammation, we established a mouse model of allergic inflammation. We used house dust mite extract to induce a hyper-reactive systemic immune response. Additionally, we subcutaneously inoculated two types of cancer cells (CT26 and 4T1 tumors). We conducted immune profiling of the ex-vivo tumor mass using multicolor flow cytometry staining and performed dynamic analysis of peripheral cytokines to explore the significant relationship between the development of allergic inflammation and tumorigenesis. We found that mice in a state of allergic inflammation were more susceptible to developing tumors. Interestingly, the growth of T cell-inflamed was inhibited in the allergic state, while growth of non-T cell-inflamed was promoted. Further research revealed that natural killer (NK) cells with enhanced tumor-killing or immune-regulating abilities were more active in " hot " tumors. Inhibiting NK cell activity can partially alleviate the impact of allergic inflammation on tumor growth. In summary, our results suggest that NK cells play significant role in suppressing tumor growth in an allergic inflammation mouse model. This phenomenon seems to be closely linked to both the inherent characteristics of the tumor and its interaction with the immune system. The innate immune system can be mobilized to synergize with the adaptive immune system to inhibit tumor growth, which opens a new way for a tumor immunotherapy.