Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(4): e31191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219044

RESUMO

Transplantation of brown adipose tissue (BAT) is a promising approach for treating obesity and metabolic disorders. However, obtaining sufficient amounts of functional BAT or brown adipocytes for transplantation remains a major challenge. In this study, we developed a hydrogel that combining adipose acellular matrix (AAM) and GelMA and HAMA that can be adjusted for stiffness by modulating the duration of light-crosslinking. We used human white adipose tissue-derived microvascular fragments to create beige adipose organoids (BAO) that were encapsulated in either a soft or stiff AAM hydrogel. We found that BAOs cultivated in AAM hydrogels with high stiffness demonstrated increased metabolic activity and upregulation of thermogenesis-related genes. When transplanted into obese and type 2 diabetes mice, the HFD + BAO group showed sustained improvements in metabolic rate, resulting in significant weight loss and decreased blood glucose levels. Furthermore, the mice showed a marked reduction in nonalcoholic liver steatosis, indicating improved liver function. In contrast, transplantation of 2D-cultured beige adipocytes failed to produce these beneficial effects. Our findings demonstrate the feasibility of fabricating beige adipose organoids in vitro and administering them by injection, which may represent a promising therapeutic approach for obesity and diabetes.


Assuntos
Tecido Adiposo Marrom , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Organoides , Animais , Humanos , Camundongos , Tecido Adiposo Marrom/transplante , Tecido Adiposo Branco/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/cirurgia , Dieta Hiperlipídica/efeitos adversos , Hidrogéis/farmacologia , Obesidade/metabolismo , Termogênese , Camundongos Nus , Masculino , Organoides/transplante
2.
Aesthetic Plast Surg ; 48(11): 2147-2154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551708

RESUMO

BACKGROUND: Facial aging involves ptosis, adipose atrophy, and skeletal resorption. Depletion of adipose tissue primarily affects the deep facial fat compartment, leading to facial depression or ptosis, accompanied by atrophy of the superficial compartment. Restoring volume in the deep fat compartment is crucial for facial rejuvenation, while enhancing its supportive properties is also important. The superficial fat compartment contains small-sized adipocytes, and autologous fat grafting is a popular approach. However, variability in fat retention, homogeneity, and processing methods can impact outcomes, necessitating careful selection of a suitable fat processing material for precise facial fat grafting. METHOD: A retrospective study was conducted on 50 patients who underwent facial augmentation using combined transplantation of high-density fat (HDF) and condensed low-density fat (CLDF) and 25 patients who underwent conventional Coleman fat grafting. Coleman fat was harvested by standard technique and the adipose tissue was divided into HDF and CLDF fractions through centrifugation. Subsequently, the low-density fat fraction was subjected to a process involving physical disruption followed by additional centrifugation to obtain CLDF. The CLDF fraction was consequently injected into the pre-SMAS subcutaneous layer of the superficial fat compartments. Patient satisfaction was evaluated using a typical Likert scale. Photographs were taken and imageological examinations were performed before and after treatment. RESULT: The CLDF+HDF grafting group demonstrated a significantly shorter duration of swelling (6.0 ± 1.2 to 12.6 ± 3.3 days) and higher level of patient satisfaction when compared to the Coleman fat group. No serious complications were observed among all the patients who received the injections. CONCLUSION: The use of this new treatment approach allows for precise fat transplantation in facial regions. The use of high-concentration fat filling for deep facial layers and CLDF filling for superficial layers is a safe and effective treatment plan for facial rejuvenation. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Tecido Adiposo , Rejuvenescimento , Humanos , Rejuvenescimento/fisiologia , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Tecido Adiposo/transplante , Adulto , Masculino , Resultado do Tratamento , Transplante Autólogo/métodos , Satisfação do Paciente , Técnicas Cosméticas , Envelhecimento da Pele , Estudos de Coortes , Face/cirurgia , Estética
3.
Aesthetic Plast Surg ; 48(13): 2536-2544, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38538770

RESUMO

Type IV collagen is a major component of the extracellular matrix in adipose tissue. It is secreted during the lipogenic differentiation of mesenchymal stem cells, but its direct impact and mechanism on the differentiation of adipose-derived stem cells (ASCs) into lipids are unclear. In this study, ASCs were obtained from human liposuction samples and cultured. Lipogenic induction of ASCs was achieved using lipogenic induction medium. Immunofluorescence analysis revealed differential expression of type IV collagen during the early and late stages of adipogenic induction, displaying a distinct morphological encapsulation of ASCs. Silencing of type IV collagen using siRNA resulted in a significant decrease in adipogenic capacity, as indicated by reduced lipid droplet formation and downregulation of adipogenic-related gene transcription. Conversely, supplementation of the culture medium with synthetic type IV collagen demonstrated enhanced adipogenic induction efficiency, accompanied by upregulation of YAP/TAZ protein expression and its downstream target gene transcription. Furthermore, inhibition of the YAP/TAZ pathway using the inhibitor Blebbistatin attenuated the functionality of type IV collagen, leading to decreased lipid droplet formation and downregulation of adipocyte maturation-related gene expression. These findings highlight the crucial role of type IV collagen in promoting adipogenic differentiation of ASCs and suggest its involvement in the YAP/TAZ-mediated Hippo pathway.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Adipogenia , Diferenciação Celular , Colágeno Tipo IV , Humanos , Adipogenia/fisiologia , Adipogenia/genética , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Células Cultivadas , Tecido Adiposo/citologia , Adipócitos , Feminino , Células-Tronco , Adulto
4.
Front Endocrinol (Lausanne) ; 15: 1365156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686209

RESUMO

Obesity is a chronic disease that affects the energy balance of the whole body. In addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive accumulation of extracellular matrix, which could be caused by various factors, including the status of adipocytes. The morphology of adipocytes responds rapidly and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal adipocytes protects peripheral organs from damage from lipotoxicity. However, the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by inducing unresolved chronic inflammation, persistent hypoxia, and increasing myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts the flexible expansion and contraction of adipose tissue but also initiates the development of various diseases through cellular autonomic and paracrine effects. Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic changes represent potential candidate targets. Thus, modulation of adipocytes may provide potential therapeutic avenues for reversing pathological fibrosis in adipose tissue and achieving the anti-obesity purpose.


Assuntos
Adipócitos , Fibrose , Obesidade , Humanos , Obesidade/patologia , Obesidade/metabolismo , Adipócitos/patologia , Adipócitos/metabolismo , Animais , Tecido Adiposo/patologia , Tecido Adiposo/metabolismo
5.
Stem Cell Res Ther ; 15(1): 250, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135129

RESUMO

BACKGROUND: In the repair of massive tissue defects using expanded large skin flaps, the incidence of complications increases with the size of the expanded area. Currently, stem cell therapy has limitations to solve this problem. We hypothesized that conditioned medium of adipose-derived stem cells (ADSC-CM) collected following mechanical pretreatment can assist skin expansion. METHODS: Rat aortic endothelial cells and fibroblasts were cultured with ADSC-CM collected under 0%, 10%, 12%, and 15% stretching force. Ten-milliliter cylindrical soft tissue expanders were subcutaneously implanted into the backs of 36 Sprague-Dawley rats. The 0% and 10% stretch groups were injected with ADSC-CM collected under 0% and 10% stretching force, respectively, while the control group was not injected. After 3, 7, 14, and 30 days of expansion, expanded skin tissue was harvested for staining and qPCR analyses. RESULTS: Endothelial cells had the best lumen formation and highest migration rate, and fibroblasts secreted the most collagen upon culture with ADSC-CM collected under 10% stretching force. The skin expansion rate was significantly increased in the 10% stretch group. After 7 days of expansion, the number of blood vessels in the expanded area, expression of the angiogenesis-associated proteins vascular endothelial growth factor, basic fibroblast growth factor, and hepatocyte growth factor, and collagen deposition were significantly increased in the 10% stretch group. CONCLUSIONS: The optimal mechanical force upregulates specific paracrine proteins in ADSCs to increase angiogenesis and collagen secretion, and thereby promote skin regeneration and expansion. This study provides a new auxiliary method to expand large skin flaps.


Assuntos
Tecido Adiposo , Comunicação Parácrina , Ratos Sprague-Dawley , Pele , Animais , Ratos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Pele/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Meios de Cultivo Condicionados/farmacologia , Expansão de Tecido/métodos , Masculino , Células-Tronco/metabolismo , Células-Tronco/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Células Cultivadas , Neovascularização Fisiológica , Estresse Mecânico
6.
Cell Metab ; 36(6): 1287-1301.e7, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838641

RESUMO

Adipocytes in dermis are considered to be important participants in skin repair and regeneration, but the role of subcutaneous white adipose tissue (sWAT) in skin repair is poorly understood. Here, we revealed the dynamic changes of sWAT during wound healing process. Lineage-tracing mouse studies revealed that sWAT would enter into the large wound bed and participate in the formation of granulation tissue. Moreover, sWAT undergoes beiging after skin injury. Inhibition of sWAT beiging by genetically silencing PRDM16, a key regulator to beiging, hindered wound healing process. The transcriptomics results suggested that beige adipocytes in sWAT abundantly express neuregulin 4 (NRG4), which regulated macrophage polarization and the function of myofibroblasts. In diabetic wounds, the beiging of sWAT was significantly suppressed. Thus, adipocytes from sWAT regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes.


Assuntos
Tecido Adiposo Branco , Pele , Cicatrização , Animais , Tecido Adiposo Branco/metabolismo , Camundongos , Pele/metabolismo , Pele/patologia , Camundongos Endogâmicos C57BL , Gordura Subcutânea/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Neurregulinas/metabolismo , Neurregulinas/genética , Masculino , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Tecido Adiposo Marrom/metabolismo , Adipócitos Bege/metabolismo , Macrófagos/metabolismo , Humanos , Miofibroblastos/metabolismo
7.
Front Cell Infect Microbiol ; 13: 1265872, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145043

RESUMO

In this report, we present a case study of a rare human bacterium, Corynebacterium bovis, which caused an infection in a patient who had undergone autologous fat-based breast augmentation using cryopreserved fat. This infection occurred during a secondary fat grafting procedure. To identify the bacteria causing the infection, we used high-throughput DNA sequencing technology since this bacterium is seldomly reported in human infections. The patient was successfully treated with intravenous imipenem. We also discuss potential factors that may have contributed to this unusual bacterial infection and propose that DNA sequencing can be a useful tool in cases where standard culture techniques fail to identify the causative agent. Additionally, we highlight the importance of further research on the cryopreservation of fat. In summary, this case highlights the possibility of rare bacterial infections occurring after fat grafting procedures and emphasizes the importance of identifying the causative agent through advanced techniques such as DNA sequencing. Further research is needed to improve our understanding of the risks associated with cryopreservation of fat and to identify ways to prevent these types of infections in the future.


Assuntos
Tecido Adiposo , Mamoplastia , Humanos , Transplante Autólogo/efeitos adversos , Transplante Autólogo/métodos , Mamoplastia/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA