Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 19(20): 3614-3628, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37161724

RESUMO

We investigate by means of small angle neutron scattering experiments and numerical simulations the interactions and inter-particle arrangements of concentrated dispersions of copolymer poly(N-isopropylacrylamide)-poly(ethylene glycol methyl ether methacrylate) (PNIPAM-PEGMA) microgels across the volume phase transition (VPT). The scattering data of moderately concentrated dispersions are accurately modeled at all temperatures by using a star polymer form factor and static structure factors calculated from the effective potential obtained from simulations. Interestingly, for temperatures below the VPT temperature (VPTT), the radius of gyration and blob size of the particles significantly decrease with increasing the effective packing fraction in the non-overlapping regime. This is attributed to the presence of charges in the system associated with the use of an ionic initiator in the synthesis. Simulations using the experimentally corroborated interaction potential are used to explore the state diagram in a wide range of effective packing fractions. Below and slightly above the VPTT, the system undergoes an arrest transition mainly driven by the soft repulsion between the particles. Only well above the VPTT the system is found to phase separate before arresting. Our results highlight the versatility and potential of copolymer PNIPAM-PEGMA microgels to explore different kinds of arrested states balancing attraction and repulsion by changing temperature and packing fraction.

2.
Soft Matter ; 19(24): 4599, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37288567

RESUMO

Correction for 'Concentration and temperature dependent interactions and state diagram of dispersions of copolymer microgels' by José Ruiz-Franco et al., Soft Matter, 2023, 19, 3614-3628, https://doi.org/10.1039/D3SM00120B.

3.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563114

RESUMO

Hydrogels consist of three-dimensionally crosslinked polymeric chains, are hydrophilic, have the ability to absorb other molecules in their structure and are relatively easy to obtain. However, in order to improve some of their properties, usually mechanical, or to provide them with some physical, chemical or biological characteristics, hydrogels have been synthesized combined with other synthetic or natural polymers, filled with inorganic nanoparticles, metals, and even polymeric nanoparticles, giving rise to composite hydrogels. In general, different types of hydrogels have been synthesized; however, in this review, we refer to those obtained from the thermosensitive polymer poly(N-vinylcaprolactam) (PNVCL) and we focus on the definition, properties, synthesis techniques, nanomaterials used as fillers in composites and mainly applications of PNVCL-based hydrogels in the biomedical area. This type of material has great potential in biomedical applications such as drug delivery systems, tissue engineering, as antimicrobials and in diagnostic and bioimaging.


Assuntos
Hidrogéis , Nanopartículas , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Hidrogéis/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Polímeros/química , Engenharia Tecidual/métodos
4.
Appl Opt ; 58(36): 9955-9966, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31873642

RESUMO

We describe a method for inverting spectroscopic data of the absorption and extinction properties of colloidal samples of resonant particles. We show that, with some prior knowledge, the genetic algorithm employed is able to estimate the probability density function of particle sizes. Since the data are sensitive to the shape and material of the particles, some information about these properties can also be retrieved. The viability of the method is illustrated by inverting numerically generated data, as well as experimental data obtained with specially prepared samples of metallic nanoparticles in aqueous suspension.

5.
PLoS One ; 19(1): e0294874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241427

RESUMO

Cancer is the second leading cause of death worldwide. To combat this disease, novel and specialized therapeutic systems are urgently needed. This is the first study to explore a system that combines shark variable domain (Fv) of new antigen receptor (VNAR) antibodies (hereinafter VNARs), PEGylated nanogels (pH-sensitive poly(N,N-diethylaminoethyl methacrylate, PDEAEM), and the anticancer drug 5-fluorouracil (5-FU) to explore its potential applications in colon cancer therapies. Nanogels were functionalized in a scalable reaction with an N-hydroxysuccinimide (NHS)-terminated polyethylene glycol derivative and bioconjugated with shark antibodies. Dynamic light scattering measurements indicated the presence of monodispersed nanogels (74 to 236 nm). All systems maintained the pH-sensitive capacity to increase in size as pH decreased. This has direct implications for the release kinetics of 5-FU, which was released faster at pH 5 than at pH 7.4. After bioconjugation, the ELISA results indicated VNAR presence and carcinoembryonic antigen (CEA) recognition. In vitro evaluations of HCT-116 colon cancer cells indicated that functionalized empty nanogels are not cytotoxic and when loaded with 5-FU, the cytotoxic effect of the drug is preserved. A 15% reduction in cell viability was observed after two hours of contact with bioconjugated nanogels when compared to what was observed with non-bioconjugated nanogels. The prepared nanogel system shows potential as an effective and site-specific nanocarrier with promising applications in in vivo studies of colon cancer therapies.


Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Nanogéis/química , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/química , Polietilenoglicóis/química , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química
6.
Pharmaceutics ; 15(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37111585

RESUMO

Chemically crosslinked hydrogels based on poly(N-vinylcaprolactam) (PNVCL) were synthetized by a photoinitiated chemical method. A galactose-based monomer, 2-lactobionamidoethyl methacrylate (LAMA), and N-vinylpyrrolidone (NVP) were added with the aim to improve the physical and chemical properties of hydrogels. The effects of both comonomers on the swelling ratio (Q), volume phase transition temperature (VPTT), glass transition temperature (Tg), and Young's moduli by mechanical compression below and above the VPTT were studied. Gold nanorods (GNRDs) and 5-fluorouracil (5FU) were embedded into the hydrogels, to study the drug release profiles with and without the excitation of GNRDs by irradiation in the near-infrared region (NIR). Results showed that the addition of LAMA and NVP increased the hydrogels' hydrophilicity, elasticity, and VPTT. The loading of GNRDs in the hydrogels changed the release rate of 5FU when irradiated intermittently with an NIR laser. The present study reports on the preparation of a hydrogel-based platform of PNVCL-GNRDs-5FU as a potential hybrid anticancer hydrogel for chemo/photothermal therapy that could be applied against skin cancer for topical 5FU delivery.

7.
Pharm Dev Technol ; 17(2): 170-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21047274

RESUMO

Poly(carboxyalkyl methacrylates) were studied as a cationic-drug delivery system, at pH 6.8 and 8.0. Different polymer/drug complexes were used to prepare compressed tablets. By kinetics experiments, we have found that drug release is dependent on both the hydrophobicity of the whole complex and the pH of the environment. Furthermore, a mechanism of dissociation/erosion clearly describes the drug release from a complex formed by a polymer soluble at target pH; otherwise, a mechanism of dissolution/diffusion is depicted. Additionally, we have observed that hydrophilic fillers increase the drug release rate. Since our results using different polymer/drug complexes exhibit pH-sensitive drug release, we propose that the poly(carboxyalkyl methacrylates) have potential as a colon-specific drug-delivery system.


Assuntos
Preparações de Ação Retardada/química , Preparações Farmacêuticas/administração & dosagem , Ácidos Polimetacrílicos/química , Cátions/química , Eletrólitos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Solubilidade
8.
Pharmaceutics ; 14(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35335936

RESUMO

Dual-function nanogels (particle size from 98 to 224 nm) synthesized via surfactant-free emulsion polymerization (SFEP) were tested as smart carriers toward synergistic chemo- and photothermal therapy. Cisplatin (CDDP) or doxorubicin (DOX) and gold nanorods (GNRDs) were loaded into galacto-functionalized PNVCL-based nanogels, where the encapsulation efficiency for CDDP and DOX was around 64 and 52%, respectively. PNVCL-based nanogels were proven to be an efficient delivery vehicle under conditions that mimic the tumor site in vitro. The release of CDDP or DOX was slower at pH 7.4 and 37 °C than at tumor conditions of pH 6 and 40 °C. On the other hand, in the systems with GNRDs at pH 7.4 and 37 °C, the sample was irradiated with a 785 nm laser for 10 min every hour, obtaining that the release profiles were even higher than in the conditions that simulated a cancer tissue (without irradiation). Thus, the present study demonstrates the synergistic effect of chemo- and photothermal therapy as a promising dual function in the potential future use of PNVCL nanogels loaded with GNRDs and CDDP/DOX to achieve an enhanced chemo/phototherapy in vivo.

9.
Macromolecules ; 55(5): 1834-1843, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35283539

RESUMO

We combine small-angle scattering experiments and simulations to investigate the internal structure and interactions of composite poly(N-isopropylacrylamide)-poly(ethylene glycol) (PNIPAM-PEG) microgels. At low temperatures the experimentally determined form factors and the simulated density profiles indicate a loose internal particle structure with an extended corona that can be modeled as a starlike object. With increasing temperature across the volumetric phase transition, the form factor develops an inflection that, using simulations, is interpreted as arising from a conformation in which PEG chains are incorporated in the interior of the PNIPAM network. This gives rise to a peculiar density profile characterized by two dense, separated regions, at odds with configurations in which the PEG chains reside on the surface of the PNIPAM core. The conformation of the PEG chains also have profound effects on the interparticle interactions: Although chains on the surface reduce the solvophobic attraction typically experienced by PNIPAM particles at high temperatures, PEG chains inside the PNIPAM network shift the onset of attractive interaction at even lower temperatures. Our results show that by tuning the morphology of the composite microgels, we can qualitatively change both their structure and their mutual interactions, opening the way to explore new collective behaviors of these objects.

10.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080684

RESUMO

Mexican oregano (Lippia graveolens) polyphenols have antioxidant and anti-inflammatory potential, but low bioaccessibility. Therefore, in the present work the micro/nano-encapsulation of these compounds in two different matrixes of chitosan (CS) and chitosan-b-poly(PEGMA2000) (CS-b-PPEGMA) is described and assessed. The particle sizes of matrixes of CS (~955 nm) and CS-b-PPEGMA (~190 nm) increased by 10% and 50%, respectively, when the phenolic compounds were encapsulated, yielding loading efficiencies (LE) between 90-99% and 50-60%, correspondingly. The release profiles in simulated fluids revealed a better control of host-guest interactions by using the CS-b-PPEGMA matrix, reaching phenolic compounds release of 80% after 24 h, while single CS retained the guest compounds. The total reducing capacity (TRC) and Trolox equivalent antioxidant capacity (TEAC) of the phenolic compounds (PPHs) are protected and increased (more than five times) when they are encapsulated. Thus, this investigation provides a standard encapsulation strategy and relevant results regarding nutraceuticals stabilization and their improved bioaccessibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA