Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 66(13): 8929-8950, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37314941

RESUMO

An unmet medical need remains for patients suffering from dry eye disease (DED). A fast-acting, better-tolerated noncorticosteroid anti-inflammatory eye drop could improve patient outcomes and quality of life. Herein, we describe a small-molecule drug discovery effort to identify novel, potent, and water-soluble JAK inhibitors as immunomodulating agents for topical ocular disposition. A focused library of known 3-(4-(2-(arylamino)pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitriles was evaluated as a molecular starting point. Structure-activity relationships (SARs) revealed a ligand-efficient (LE) JAK inhibitor series, amenable to aqueous solubility. Subsequent in vitro analysis indicated the potential for off-target toxicity. A KINOMEscan selectivity profile of 5 substantiated the likelihood of widespread series affinity across the human kinome. An sp2-to-sp3 drug design strategy was undertaken to attenuate off-target kinase activity while driving JAK-STAT potency and aqueous solubility. Tactics to reduce aromatic character, increase fraction sp3 (Fsp3), and bolster molecular complexity led to the azetidin-3-amino bridging scaffold in 31.


Assuntos
Inibidores de Janus Quinases , Humanos , Janus Quinase 1 , Janus Quinase 2 , Janus Quinase 3 , Inibidores de Janus Quinases/farmacologia , Janus Quinases , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Solubilidade
2.
ACS Infect Dis ; 7(7): 2013-2024, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33792305

RESUMO

During the past decade, artemisinin as an antimalarial has been in the spotlight, in part due to the Nobel Prize in Physiology or Medicine awarded to Tu Youyou. While many studies have been completed detailing the significant increase in activity resulting from the dimerization of natural product artemisinin, activity increases unaccounted for by the peroxide bridge have yet to be researched. Here we outline the synthesis and testing for antimalarial activity of artemisinin dimers in which the peroxide bridge in one-half of the dimer is reduced, resulting in a dimer with one active and one deactivated artemisinin moiety.


Assuntos
Antimaláricos , Artemisininas , Antimaláricos/farmacologia , Artemisininas/farmacologia , Dimerização
3.
J Med Chem ; 61(4): 1450-1473, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29215279

RESUMO

Malaria deaths have been decreasing over the last 10-15 years, with global mortality rates having fallen by 47% since 2000. While the World Health Organization (WHO) recommends the use of artemisinin-based combination therapies (ACTs) to combat malaria, the emergence of artemisinin resistant strains underscores the need to develop new antimalarial drugs. Recent in vivo efficacy improvements of the historical antimalarial ICI 56,780 have been reported, however, with the poor solubility and rapid development of resistance, this compound requires further optimization. A series of piperazine-containing 4(1H)-quinolones with greatly enhanced solubility were developed utilizing structure-activity relationship (SAR) and structure-property relationship (SPR) studies. Furthermore, promising compounds were chosen for an in vivo scouting assay to narrow selection for testing in an in vivo Thompson test. Finally, two piperazine-containing 4(1H)-quinolones were curative in the conventional Thompson test and also displayed in vivo activity against the liver stages of the parasite.


Assuntos
Antimaláricos/síntese química , Piperazina/química , Quinolonas/química , Animais , Antimaláricos/farmacocinética , Desenho de Fármacos , Humanos , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Quinolonas/uso terapêutico , Solubilidade , Relação Estrutura-Atividade
4.
J Med Chem ; 59(14): 6943-60, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27291102

RESUMO

Though malaria mortality rates are down 48% globally since 2000, reported occurrences of resistance against current therapeutics threaten to reverse that progress. Recently, antimalarials that were once considered unsuitable therapeutic agents have been revisited to improve physicochemical properties and efficacy required for selection as a drug candidate. One such compound is 4(1H)-quinolone ICI 56,780, which is known to be a causal prophylactic that also displays blood schizonticidal activity against P. berghei. Rapid induction of parasite resistance, however, stalled its further development. We have completed a full structure-activity relationship study on 4(1H)-quinolones, focusing on the reduction of cross-resistance with atovaquone for activity against the clinical isolates W2 and TM90-C2B, as well as the improvement of microsomal stability. These studies revealed several frontrunner compounds with superb in vivo antimalarial activity. The best compounds were found to be curative with all mice surviving a Plasmodium berghei infection after 30 days.


Assuntos
Antimaláricos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Quinolonas/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA