Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Microbiol ; 121(3): 513-528, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38115201

RESUMO

Intracellular bacteria have evolved mechanisms to invade host cells, establish an intracellular niche that allows survival and replication, produce progeny, and exit the host cell after completion of the replication cycle to infect new target cells. Bacteria exit their host cell by (i) initiation of apoptosis, (ii) lytic cell death, and (iii) exocytosis. While bacterial egress is essential for bacterial spreading and, thus, pathogenesis, we currently lack information about egress mechanisms for the obligate intracellular pathogen C. burnetii, the causative agent of the zoonosis Q fever. Here, we demonstrate that C. burnetii inhibits host cell apoptosis early during infection, but induces and/or increases apoptosis at later stages of infection. Only at later stages of infection did we observe C. burnetii egress, which depends on previously established large bacteria-filled vacuoles and a functional intrinsic apoptotic cascade. The released bacteria are not enclosed by a host cell membrane and can infect and replicate in new target cells. In summary, our data argue that C. burnetii egress in a non-synchronous way at late stages of infection. Apoptosis-induction is important for C. burnetii egress, but other pathways most likely contribute.


Assuntos
Coxiella burnetii , Febre Q , Humanos , Coxiella burnetii/metabolismo , Febre Q/metabolismo , Febre Q/microbiologia , Febre Q/patologia , Apoptose/fisiologia , Transdução de Sinais , Vacúolos/metabolismo , Interações Hospedeiro-Patógeno
2.
PLoS Pathog ; 18(11): e1010991, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399504

RESUMO

The human pathogen Yersinia enterocolitica strain W22703 is characterized by its toxicity towards invertebrates that requires the insecticidal toxin complex (Tc) proteins encoded by the pathogenicity island Tc-PAIYe. Molecular and pathophysiological details of insect larvae infection and killing by this pathogen, however, have not been dissected. Here, we applied oral infection of Galleria mellonella (Greater wax moth) larvae to study the colonisation, proliferation, tissue invasion, and killing activity of W22703. We demonstrated that this strain is strongly toxic towards the larvae, in which they proliferate by more than three orders of magnitude within six days post infection. Deletion mutants of the genes tcaA and tccC were atoxic for the insect. W22703 ΔtccC, in contrast to W22703 ΔtcaA, initially proliferated before being eliminated from the host, thus confirming TcaA as membrane-binding Tc subunit and TccC as cell toxin. Time course experiments revealed a Tc-dependent infection process starting with midgut colonisation that is followed by invasion of the hemolymph where the pathogen elicits morphological changes of hemocytes and strongly proliferates. The in vivo transcriptome of strain W22703 shows that the pathogen undergoes a drastic reprogramming of central cell functions and gains access to numerous carbohydrate and amino acid resources within the insect. Strikingly, a mutant lacking a phage-related holin/endolysin (HE) cassette, which is located within Tc-PAIYe, resembled the phenotypes of W22703 ΔtcaA, suggesting that this dual lysis cassette may be an example of a phage-related function that has been adapted for the release of a bacterial toxin.


Assuntos
Bacteriófagos , Mariposas , Yersinia enterocolitica , Animais , Humanos , Insetos , Larva
3.
BMC Microbiol ; 24(1): 118, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575865

RESUMO

Q fever, a worldwide-occurring zoonotic disease, can cause economic losses for public and veterinary health systems. Vaccines are not yet available worldwide and currently under development. In this regard, it is important to produce a whole cell antigen, with preserved structural and antigenic properties and free of chemical modifications. Thus, inactivation of Coxiella burnetii with ultraviolet light C (UVC) was evaluated. C. burnetii Nine Mile phase I (NMI) and phase II (NMII) were exposed to decreasing intensities in a time-dependent manner and viability was tested by rescue cultivation in axenic medium or cell culture. Effects on the cell structure were visualized by transmission electron microscopy and antigenicity of UVC-treated NMI was studied by immunization of rabbits. NMI and NMII were inactivated at UVC intensities of 250 µW/cm2 for 5 min or 100 µW/cm2 for 20 min. Reactivation by DNA repair was considered to be unlikely. No morphological changes were observed directly after UVC inactivation by transmission electron microscopy, but severe swelling and membrane degradation of bacteria with increasing severity occurred after 24 and 48 h. Immunization of rabbits resulted in a pronounced antibody response. UVC inactivation of C. burnetii resulted in a structural preserved, safe whole cell antigen and might be useful as antigen for diagnostic purposes or as vaccine candidate.


Assuntos
Coxiella burnetii , Febre Q , Vacinas , Animais , Coelhos , Febre Q/microbiologia
4.
Appl Environ Microbiol ; 89(6): e0003623, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184385

RESUMO

The insecticidal toxin complex (Tc) proteins are produced by several insect-associated bacteria, including Yersinia enterocolitica strain W22703, which oscillates between two distinct pathogenicity phases in invertebrates and humans. The mechanism by which this high-molecular-weight toxin is released into the extracellular surrounding, however, has not been deciphered. In this study, we investigated the regulation and functionality of a phage-related holin/endolysin (HE) cassette located within the insecticidal pathogenicity island Tc-PAIYe of W22703. Using the Galleria mellonella infection model and luciferase reporter fusions, we revealed that quorum sensing contributes to the insecticidal activity of W22703 upon influencing the transcription of tcaR2, which encodes an activator of the tc and HE genes. In contrast, a lack of the Yersinia modulator, YmoA, stimulated HE gene transcription, and mutant W22703 ΔymoA exhibited a stronger toxicity toward insect larvae than did W22703. A luciferase reporter fusion demonstrated transcriptional activation of the HE cassette in vivo, and a significantly larger extracellular amount of subunit TcaA was found in W22703 ΔymoA relative to its ΔHE mutant. Using competitive growth assays, we demonstrated that at least in vitro, the TcaA release upon HE activity is not mediated by cell lysis of a significant part of the population. Oral infection of Caenorhabditis elegans with a HE deletion mutant attenuated the nematocidal activity of the wild type, similar to the case with a mutant lacking a Tc subunit. We conclude that the dual holin/endolysin cassette of yersiniae is a novel example of a phage-related function adapted for the release of a bacterial toxin. IMPORTANCE Members of the genus Yersinia cause gastroenteritis in humans but also exhibit toxicity toward invertebrates. A virulence factor required for this environmental life cycle stage is the multisubunit toxin complex (Tc), which is distinct from the insecticidal toxin of Bacillus thuringiensis and has the potential to be used in pest control. The mechanism by which this high-molecular-weight Tc is secreted from bacterial cells has not been uncovered. Here, we show that a highly conserved phage-related holin/endolysin pair, which is encoded by the genes holY and elyY located between the Tc subunit genes, is essential for the insecticidal activity of Y. enterocolitica and that its activation increases the amount of Tc subunits in the supernatant. Thus, the dual holY-elyY cassette of Y. enterocolitica constitutes a new example for a type 10 secretion system to release bacterial toxins.


Assuntos
Toxinas Bacterianas , Inseticidas , Mariposas , Yersinia enterocolitica , Animais , Humanos , Yersinia enterocolitica/genética , Caenorhabditis elegans/metabolismo , Mariposas/microbiologia , Toxinas Bacterianas/metabolismo , Insetos , Inseticidas/metabolismo , Luciferases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982586

RESUMO

A more effective vaccine against tuberculosis than Bacille Calmette-Guérin (BCG) is urgently needed. BCG derived recombinant VPM1002 has been found to be more efficacious and safer than the parental strain in mice models. Newer candidates, such as VPM1002 Δpdx1 (PDX) and VPM1002 ΔnuoG (NUOG), were generated to further improve the safety profile or efficacy of the vaccine. Herein, we assessed the safety and immunogenicity of VPM1002 and its derivatives, PDX and NUOG, in juvenile goats. Vaccination did not affect the goats' health in regards to clinical/hematological features. However, all three tested vaccine candidates and BCG induced granulomas at the site of injection, with some of the nodules developing ulcerations approximately one month post-vaccination. Viable vaccine strains were cultured from the injection site wounds in a few NUOG- and PDX- vaccinated animals. At necropsy (127 days post-vaccination), BCG, VPM1002, and NUOG, but not PDX, still persisted at the injection granulomas. All strains, apart from NUOG, induced granuloma formation only in the lymph nodes draining the injection site. In one animal, the administered BCG strain was recovered from the mediastinal lymph nodes. Interferon gamma (IFN-γ) release assay showed that VPM1002 and NUOG induced a strong antigen-specific response comparable to that elicited by BCG, while the response to PDX was delayed. Flow cytometry analysis of IFN-γ production by CD4+, CD8+, and γδ T cells showed that CD4+ T cells of VPM1002- and NUOG-vaccinated goats produced more IFN-γ compared to BCG-vaccinated and mock-treated animals. In summary, the subcutaneous application of VPM1002 and NUOG induced anti-tuberculous immunity, while exhibiting a comparable safety profile to BCG in goats.


Assuntos
Vacina BCG , Tuberculose , Animais , Camundongos , Cabras , Tuberculose/prevenção & controle , Linfócitos T , Vacinação/efeitos adversos
6.
Anal Chem ; 94(12): 4988-4996, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35302749

RESUMO

The life cycle of intracellular pathogens is often complex and can include different morphoforms. Treatment of intracellular infections and unperturbed studying of the pathogen inside the host cell are frequently challenging. Here, we present a Raman-based, label-free, non-invasive, and non-destructive method to localize, visualize, and even quantify intracellular bacteria in 3D within intact host cells in a Coxiella burnetii infection model. C. burnetii is a zoonotic obligate intracellular pathogen that causes infections in ruminant livestock and humans with an acute disease known as Q fever. Using statistical data analysis, no isolation is necessary to gain detailed information on the intracellular pathogen's metabolic state. High-quality false color image stacks with diffraction-limited spatial resolution enable a 3D spatially resolved single host cell analysis that shows excellent agreement with results from transmission electron microscopy. Quantitative analysis at different time points post infection allows to follow the infection cycle with the transition from the large cell variant (LCV) to the small cell variant (SCV) at around day 6 and a gradual change in the lipid composition during vacuole maturation. Spectral characteristics of intracellular LCV and SCV reveal a higher lipid content of the metabolically active LCV.


Assuntos
Coxiella burnetii , Coxiella burnetii/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Vacúolos
7.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232295

RESUMO

Tuberculous granulomas are highly dynamic structures reflecting the complex host-mycobacterium interactions. The objective of this study was to compare granuloma development at the site of vaccination with BCG and its recombinant derivatives in goats. To characterize the host response, epithelioid cells, multinucleated giant cells (MNGC), T cell subsets, B cells, plasma cells, dendritic cells and mycobacterial antigen were labelled by immunohistochemistry, and lipids and acid-fast bacteria (AFB) were labelled by specific staining. Granulomas with central caseous necrosis developed at the injection site of most goats though lesion size and extent of necrosis differed between vaccine strains. CD4+ T and B cells were more scarce and CD8+ cells were more numerous in granulomas induced by recombinant derivatives compared to their parental BCG strain. Further, the numbers of MNGCs and cells with lipid bodies were markedly lower in groups administered with recombinant BCG strains. Microscopic detection of AFB and mycobacterial antigen was rather frequent in the area of central necrosis, however, the isolation of bacteria in culture was rarely successful. In summary, BCG and its recombinant derivatives induced reproducibly subcutaneous caseous granulomas in goats that can be easily monitored and surgically removed for further studies. The granulomas reflected the genetic modifications of the recombinant BCG-derivatives and are therefore suitable models to compare reactions to different mycobacteria or TB vaccines.


Assuntos
Vacina BCG , Mycobacterium , Tuberculose , Animais , Vacina BCG/efeitos adversos , Cabras , Granuloma/etiologia , Lipídeos , Mycobacterium/genética , Necrose
8.
Antonie Van Leeuwenhoek ; 113(12): 2139-2154, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33150542

RESUMO

A number of different Chlamydia spp. have been detected in the class Amphibia with C. pneumoniae being the predominant species involved. Chlamydiae have been linked to mass mortality events, thereby representing significant pathogens that deserve attention with respect to worldwide amphibian decline. We here present six cases of chlamydiosis and asymptomatic chlamydial infections in different frog species from three ex situ amphibian conservation facilities. Clinical signs predominantly characterised by regurgitation, chronic wasting, lethargy and suspended breeding were associated with C. pneumoniae infection. Despite various treatment regimens, it was not possible to clear infections. However, intra vitam diagnostics succeeded from skin, faeces and urine for the first time.


Assuntos
Infecções por Chlamydia , Chlamydia , Chlamydophila pneumoniae , Humanos
9.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316620

RESUMO

Pneumonia is a cause of high morbidity and mortality in humans. Animal models are indispensable to investigate the complex cellular interactions during lung injury and repair in vivo. The time sequence of lesion development and regeneration is described after endobronchial inoculation of calves with Chlamydia psittaci. Calves were necropsied 2-37 days after inoculation (dpi). Lesions and presence of Chlamydia psittaci were investigated using histology and immunohistochemistry. Calves developed bronchopneumonia at the sites of inoculation. Initially, Chlamydia psittaci replicated in type 1 alveolar epithelial cells followed by an influx of neutrophils, vascular leakage, fibrinous exudation, thrombosis and lobular pulmonary necrosis. Lesions were most extensive at 4 dpi. Beginning at 7 dpi, the number of chlamydial inclusions declined and proliferation of cuboidal alveolar epithelial cells and sprouting of capillaries were seen at the periphery of necrotic tissue. At 14 dpi, most of the necrosis had been replaced with alveoli lined with cuboidal epithelial cells resembling type 2 alveolar epithelial cells and mild fibrosis, and hyperplasia of organized lymphoid tissue were observed. At 37 dpi, regeneration of pulmonary tissue was nearly complete and only small foci of remodeling remained. The well-defined time course of development and regeneration of necrotizing pneumonia allows correlation of morphological findings with clinical data or treatment regimen.


Assuntos
Células Epiteliais Alveolares/fisiologia , Broncopneumonia/microbiologia , Chlamydophila psittaci/patogenicidade , Regeneração , Animais , Broncopneumonia/patologia , Bovinos , Modelos Animais de Doenças , Masculino , Neutrófilos/metabolismo
10.
Infect Immun ; 88(1)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31658957

RESUMO

Dendritic cells (DCs) and natural killer (NK) cells are critically involved in the early response against various bacterial microbes. Functional activation of infected DCs and NK cell-mediated gamma interferon (IFN-γ) secretion essentially contribute to the protective immunity against Chlamydia How DCs and NK cells cooperate during the antichlamydial response is not fully understood. Therefore, in the present study, we investigated the functional interplay between Chlamydia-infected DCs and NK cells. Our biochemical and cell biological experiments show that Chlamydia psittaci-infected DCs display enhanced exosome release. We find that such extracellular vesicles (referred to as dexosomes) do not contain infectious bacterial material but strongly induce IFN-γ production by NK cells. This directly affects C. psittaci growth in infected target cells. Furthermore, NK cell-released IFN-γ in cooperation with tumor necrosis factor alpha (TNF-α) and/or dexosomes augments apoptosis of both noninfected and infected epithelial cells. Thus, the combined effect of dexosomes and proinflammatory cytokines restricts C. psittaci growth and attenuates bacterial subversion of apoptotic host cell death. In conclusion, this provides new insights into the functional cooperation between DCs, dexosomes, and NK cells in the early steps of antichlamydial defense.


Assuntos
Comunicação Celular , Infecções por Chlamydia/imunologia , Chlamydophila psittaci/imunologia , Células Dendríticas/metabolismo , Exossomos/metabolismo , Imunidade Inata , Células Matadoras Naturais/metabolismo , Animais , Células Cultivadas , Fatores Imunológicos/metabolismo , Interferon gama/metabolismo , Camundongos , Modelos Teóricos
11.
Infect Immun ; 85(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28507071

RESUMO

Similar to other intracellular pathogens, Leishmania parasites are known to evade the antimicrobial effector functions of host immune cells. To date, however, only a few virulence factors have been described for Leishmania major, one of the causative agents of cutaneous leishmaniasis. Here, we have characterized the expression and function of an L. major phosphatase, which we termed LmPRL-1. This enzyme shows a strong structural similarity to the human phosphatases of regenerating liver (PRL-1, -2, and -3) that regulate the proliferation, differentiation, and motility of cells. The biochemical characterization of the L. major phosphatase revealed that the enzyme is redox sensitive. When analyzing the subcellular localization of LmPRL-1 in promastigotes, amastigotes, and infected macrophages, we found that the phosphatase was predominantly expressed and secreted by promastigotes via the exosome route. Finally, we observed that ectopic expression of LmPRL-1 in L. major led to an increased number of parasites in macrophages. From these data, we conclude that the L. major phosphatase LmPRL-1 contributes to the intracellular survival of the parasites in macrophages.


Assuntos
Exossomos/metabolismo , Leishmania major/enzimologia , Macrófagos/parasitologia , Proteínas Tirosina Fosfatases/metabolismo , Animais , Transporte Biológico , Proteínas de Ciclo Celular/química , Humanos , Cinética , Leishmania major/genética , Proteínas de Membrana/química , Camundongos , Proteínas de Neoplasias/química , Oxirredução , Filogenia , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Virulência , Fatores de Virulência
12.
Cell Microbiol ; 18(2): 181-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26249821

RESUMO

The obligate intracellular pathogen Coxiella burnetii replicates in a large phagolysosomal-like vacuole. Currently, both host and bacterial factors required for creating this replicative parasitophorous C. burnetii-containing vacuole (PV) are poorly defined. Here, we assessed the contributions of the most abundant proteins of the lysosomal membrane, LAMP-1 and LAMP-2, to the establishment and maintenance of the PV. Whereas these proteins were not critical for uptake of C. burnetii, they influenced the intracellular replication of C. burnetii. In LAMP-1/2 double-deficient fibroblasts as well as in LAMP-1/2 knock-down cells, C. burnetii establishes a significantly smaller, yet faster maturing vacuole, which harboured more bacteria. The accelerated maturation of PVs in LAMP double-deficient fibroblasts, which was partially or fully reversed by ectopic expression of LAMP-1 or LAMP-2, respectively, was characterized by an increased fusion rate with endosomes, lysosomes and bead-containing phagosomes, but not by different fusion kinetics with autophagy vesicles. These findings establish that LAMP proteins are critical for the maturation delay of PVs. Unexpectedly, neither the creation of the spacious vacuole nor the delay in maturation was found to be prerequisites for the intracellular replication of C. burnetii.


Assuntos
Coxiella burnetii/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Proteínas de Membrana Lisossomal/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Animais , Células CHO , Cricetulus , Endossomos/metabolismo , Fibroblastos/microbiologia , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Teste de Complementação Genética , Proteínas de Membrana Lisossomal/genética , Lisossomos/metabolismo , Fusão de Membrana , Fagossomos/metabolismo
13.
Vet Res ; 48(1): 23, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28403908

RESUMO

Ruminants are the main source of human infections with the obligate intracellular bacterium Coxiella (C.) burnetii. Infected animals shed high numbers of C. burnetii by milk, feces, and birth products. In goats, shedding by the latter route coincides with C. burnetii replication in epithelial (trophoblast) cells of the placenta, which led us to hypothesize that epithelial cells are generally implicated in replication and shedding of C. burnetii. We therefore aimed at analyzing the interactions of C. burnetii with epithelial cells of the bovine host (1) at the entry site (lung epithelium) which govern host immune responses and (2) in epithelial cells of gut, udder and placenta decisive for the quantity of pathogen excretion. Epithelial cell lines [PS (udder), FKD-R 971 (small intestine), BCEC (maternal placenta), F3 (fetal placenta), BEL-26 (lung)] were inoculated with C. burnetii strains Nine Mile I (NMI) and NMII at different cultivation conditions. The cell lines exhibited different permissiveness for C. burnetii. While maintaining cell viability, udder cells allowed the highest replication rates with formation of large cell-filling Coxiella containing vacuoles. Intestinal cells showed an enhanced susceptibility to invasion but supported C. burnetii replication only at intermediate levels. Lung and placental cells also internalized the bacteria but in strikingly smaller numbers. In any of the epithelial cells, both Coxiella strains failed to trigger a substantial IL-1ß, IL-6 and TNF-α response. Epithelial cells, with mammary epithelial cells in particular, may therefore serve as a niche for C. burnetii replication in vivo without alerting the host's immune response.


Assuntos
Doenças dos Bovinos/microbiologia , Coxiella burnetii/fisiologia , Células Epiteliais/microbiologia , Mucosa Intestinal/microbiologia , Pulmão/microbiologia , Glândulas Mamárias Animais/microbiologia , Placenta/microbiologia , Febre Q/veterinária , Animais , Derrame de Bactérias , Bovinos/microbiologia , Linhagem Celular , Citocinas/fisiologia , Feminino , Citometria de Fluxo/veterinária , Interações Hospedeiro-Patógeno/fisiologia , Microscopia de Fluorescência/veterinária , Gravidez , Febre Q/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária
14.
J Immunol ; 190(6): 2791-806, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23418629

RESUMO

Dendritic cells (DCs) are among the first professional APCs encountered by the obligate intracellular bacterium Chlamydia during infection. Using an established mouse bone marrow-derived DC line, we show that DCs control chlamydial infection in multiple small inclusions characterized by restricted bacterial growth, impaired cytosolic export of the virulence factor chlamydial protease-like activity factor, and interaction with guanylate-binding protein 1, a host cell factor involved in the initiation of autophagy. During maturation of infected DCs, chlamydial inclusions disintegrate, likely because they lack chlamydial protease-like activity factor-mediated protection. Released cytosolic Chlamydia are taken up by autophagosomes and colocalize with cathepsin-positive amphisomal vacuoles, to which peptide transporter TAP and upregulated MHC class I (MHC I) are recruited. Chlamydial Ags are subsequently generated through routes involving preprocessing in amphisomes via cathepsins and entry into the cytosol for further processing by the proteasome. Finally, bacterial peptides are reimported into the endosomal pathway for loading onto recycling MHC I. Thus, we unravel a novel pathway of MHC I-mediated cross-presentation that is initiated with a host cellular attack physically disrupting the parasitophorous vacuole, involves autophagy to collect cytosolic organisms into autophagosomes, and concludes with complex multistep antigenic processing in separate cellular compartments.


Assuntos
Chlamydophila psittaci/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Autofagia/imunologia , Broncopneumonia/imunologia , Broncopneumonia/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Chlamydophila psittaci/metabolismo , Chlorocebus aethiops , Células Dendríticas/patologia , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Psitacose/imunologia , Psitacose/patologia
15.
BMC Vet Res ; 11: 74, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25889716

RESUMO

BACKGROUND: Paratuberculosis caused by Mycobacterium avium subsp. paratuberculosis (MAP) is difficult to control due to a long phase of clinically non-apparent (latent) infection for which sensitive diagnostics are lacking. A defined animal model for this phase of the infection can help to investigate host-MAP interactions in apparently healthy animals and identify surrogate markers for disease progress and might also serve as challenge model for vaccines. To establish such a model in goats, different age at inoculation and doses of oral inoculum of MAP were compared. Clinical signs, faecal shedding as well as MAP-specific antibody, IFN-γ and IL-10 responses were used for in vivo monitoring. At necropsy, about one year after inoculation (pi), pathomorphological findings and bacterial organ burden (BOB) were scored. RESULTS: MAP infection manifested in 26/27 inoculated animals irrespective of age at inoculation and dose. Clinical signs developed in three goats. Faecal shedding, IFN-γ and antibody responses emerged 6, 10-14 and 14 wpi, respectively, and continued with large inter-individual variation. One year pi, lesions were detected in 26 and MAP was cultured from tissues of 23 goats. Positive animals subdivided in those with high and low overall BOB. Intestinal findings resembled paucibacillary lesions in 23 and multibacillary in 4 goats. Caseous and calcified granulomas predominated in intestinal LNN. BOB and lesion score corresponded well in intestinal mucosa and oGALT but not in intestinal LNN. CONCLUSIONS: A defined experimental infection model for the clinically non-apparent phase of paratuberculosis was established in goats as suitable basis for future studies.


Assuntos
Doenças das Cabras/microbiologia , Mycobacterium avium subsp. paratuberculosis , Paratuberculose/patologia , Animais , Formação de Anticorpos , Infecções Assintomáticas , Derrame de Bactérias , Progressão da Doença , Doenças das Cabras/patologia , Cabras/microbiologia , Interferon gama/sangue , Interleucina-10/sangue , Linfonodos/microbiologia , Linfonodos/patologia , Masculino , Paratuberculose/microbiologia , Nódulos Linfáticos Agregados/microbiologia , Nódulos Linfáticos Agregados/patologia
16.
Int J Med Microbiol ; 304(7): 877-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25082204

RESUMO

The distinctive and unique features of the avian and mammalian zoonotic pathogen Chlamydia (C.) psittaci include the fulminant course of clinical disease, the remarkably wide host range and the high proportion of latent infections that are not leading to overt disease. Current knowledge on associated diseases is rather poor, even in comparison to other chlamydial agents. In the present paper, we explain and summarize the major findings of a national research network that focused on the elucidation of host-pathogen interactions in vitro and in animal models of C. psittaci infection, with the objective of improving our understanding of genomics, pathology, pathophysiology, molecular pathogenesis and immunology, and conceiving new approaches to therapy. We discuss new findings on comparative genome analysis, the complexity of pathophysiological interactions and systemic consequences, local immune response, the role of the complement system and antigen presentation pathways in the general context of state-of-the-art knowledge on chlamydial infections in humans and animals and single out relevant research topics to fill remaining knowledge gaps on this important yet somewhat neglected pathogen.


Assuntos
Chlamydophila psittaci/genética , Chlamydophila psittaci/imunologia , Interações Hospedeiro-Patógeno , Patologia Clínica , Psitacose/imunologia , Psitacose/patologia , Animais , Chlamydophila psittaci/patogenicidade , Modelos Animais de Doenças , Genômica , Humanos , Psitacose/microbiologia
17.
Antibiotics (Basel) ; 13(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38786130

RESUMO

Staphylococcus argenteus is a recently described staphylococcal species that is related to Staphylococcus aureus but lacks the staphyloxanthin operon. It is able to acquire both resistance markers such as the SCCmec elements and mobile genetic elements carrying virulence-associated genes from S. aureus. This includes those encoding the Panton-Valentine leukocidin (PVL), which is associated mainly with severe and/or recurrent staphylococcal skin and soft tissue infections. Here, we describe the genome sequences of two PVL-positive, mecA-negative S. argenteus sequence type (ST) 2250 isolates from the United Arab Emirates in detail. The isolates were found in a dental clinic in the United Arab Emirates (UAE). Both were sequenced using Oxford Nanopore Technology (ONT). This demonstrated the presence of temperate bacteriophages in the staphylococcal genomes, including a PVL prophage. It was essentially identical to the published sequence of phiSa2wa_st78 (GenBank NC_055048), a PVL phage from an Australian S. aureus clonal complex (CC) 88 isolate. Besides the PVL prophage, one isolate carried another prophage and the second isolate carried two additional prophages, whereby the region between these two prophages was inverted. This "flipped" region comprised about 1,083,000 bp, or more than a third of the strain's genome, and it included the PVL prophage. Prophages were induced by Mitomycin C treatment and subjected to transmission electron microscopy (TEM). This yielded, in accordance to the sequencing results, one or, respectively, two distinct populations of icosahedral phages. It also showed prolate phages which presumptively might be identified as the PVL phage. This observation highlights the significance bacteriophages have as agents of horizontal gene transfer as well as the need for monitoring emerging staphylococcal strains, especially in cosmopolitan settings such as the UAE.

18.
Artigo em Alemão | MEDLINE | ID: mdl-37567196

RESUMO

This case report describes indurative mastitis in a herd of sheep caused by Maedi Visna virus (MVV) infection. Reduced udder formation after delivery, small, indurated udders and increased losses of lambs were observed in a herd of Dorper sheep. Examination of the mammary gland and milk did not reveal findings characteristic of chronic bacterial mastitis. The protein supply was insufficient which may have contributed to reduced milk yield, but was considered unlikely as cause for the induration of the mammary gland. Nineteen of the 21 mothers were positive for MVV by serology. Mammary gland and supramammary lymph nodes were collected in a sheep with indurated udder at the time of slaughter. Meat inspection did not reveal lesions in any other organs. One part of the mammary gland showed a mild to moderate multifocal lymphohistiocytic mastitis, the other exhibited a severe diffuse lymphohistiocytic mastitis with atrophy of the glandular acini, vasculopathy, fibrosis and calcification. MVV antigen was visualized by immunohistochemistry in macrophages, dendritic cells, epithelial cells and endothelial cells in the mammary gland, and macrophages and dendritic cells in the supramammary lymph nodes. A large amount of MVV provirus was detected in the supramammary lymph nodes and the severely indurated part of the mammary gland by PCR. In conclusion, indurative mastitis as a result of a systemic infection may occur independently of the commonly known manifestations of Maedi Visna in the lung and central nervous system. MVV should be considered as differential diagnosis in mastitis of sheep. The MVV status of the herd can be tested by serological detection of specific antibodies. Additionally, characteristic histological lesions are present in the mammary gland. MVV antigen can also be detected by immunohistochemistry and MVV provirus by PCR in the altered mammary gland and regional lymph nodes.


Assuntos
Mastite , Pneumonia Intersticial Progressiva dos Ovinos , Doenças dos Ovinos , Vírus Visna-Maedi , Feminino , Animais , Ovinos , Células Endoteliais/patologia , Pneumonia Intersticial Progressiva dos Ovinos/diagnóstico , Pneumonia Intersticial Progressiva dos Ovinos/complicações , Pneumonia Intersticial Progressiva dos Ovinos/patologia , Mastite/veterinária
19.
Animals (Basel) ; 13(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003160

RESUMO

This study investigated the intra- and inter-herd diversity of Mycobacterium avium subsp. paratuberculosis (MAP) isolates from four goat herds in Thuringia (Germany) that were affected by paratuberculosis for several years. The main focus was on the characterization and distribution of genotypes among animals and the environment of goat herd 1. This study included 196 isolates from the feces of 121 infected goats, various tissues from 13 clinically diseased goats, 29 environmental samples from herd 1, and additionally, 22 isolates of different origin from herds 2 to 4. The isolates, sampled between 2018 and 2022, were genotyped using short-sequence-repeat (SSR) analysis, mycobacterial-interspersed repetitive units-variable-number tandem repeat (MIRU-VNTR) analysis, and a single nucleotide polymorphism (SNP)-based assay for phylogenetic grouping. All the isolates belonged to the MAP-C group. In herd 1, one predominant genotype was determined, while two other genotypes were identified very rarely and only in fecal and environmental samples. One of three further genotypes was found in each of herds 2 to 4. The assignment of genotypes to different phylogenetic clades suggested six different infection strains. The results indicated no epidemiological links between the examined herds. Based on the current MAP genotyping data from Germany, possible sources of infection are MAP-contaminated barns previously used by infected cattle and the purchase of sub-clinically infected goats.

20.
Pathogens ; 12(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242375

RESUMO

Staphylococcus (S.) aureus colonizes up to 30% of all humans and can occasionally cause serious infections. It is not restricted to humans as it can also often be found in livestock and wildlife. Recent studies have shown that wildlife strains of S. aureus usually belong to other clonal complexes than human strains and that they might differ significantly with regard to the prevalence of genes encoding antimicrobial resistance properties and virulence factors. Here, we describe a strain of S. aureus isolated from a European badger (Meles meles). For molecular characterisation, DNA microarray-based technology was combined with various next-generation sequencing (NGS) methods. Bacteriophages from this isolate were induced with Mitomycin C and characterized in detail by transmission electron microscopy (TEM) and NGS. The S. aureus isolate belonged to ST425 and had a novel spa repeat sequence (t20845). It did not carry any resistance genes. The uncommon enterotoxin gene see was detected in one of its three temperate bacteriophages. It was possible to demonstrate the induction of all three prophages, although only one of them was expected to be capable of excision based on its carriage of the excisionase gene xis. All three bacteriophages belonged to the family Siphoviridae. Minor differences in size and shape of their heads were noted in TEM images. The results highlight the ability of S. aureus to colonize or infect different host species successfully, which can be attributed to a variety of virulence factors on mobile genetic elements, such as bacteriophages. As shown in the strain described herein, temperate bacteriophages not only contribute to the fitness of their staphylococcal host by transferring virulence factors, but also increase mobility among themselves by sharing genes for excision and mobilization with other prophages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA