Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39043180

RESUMO

The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1ß was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1ß or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1ß-mediated comorbidities, offering a framework for secondary prevention immunotherapy.

2.
Nature ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112714

RESUMO

The risk of early recurrent events after stroke remains high despite currently established secondary prevention strategies1. Risk is particularly high in patients with atherosclerosis, with more than 10% of patients experiencing early recurrent events1,2. However, despite the enormous medical burden of this clinical phenomenon, the underlying mechanisms leading to increased vascular risk and recurrent stroke are largely unknown. Here, using a novel mouse model of stroke-induced recurrent ischaemia, we show that stroke leads to activation of the AIM2 inflammasome in vulnerable atherosclerotic plaques via an increase of circulating cell-free DNA. Enhanced plaque inflammation post-stroke results in plaque destabilization and atherothrombosis, finally leading to arterioarterial embolism and recurrent stroke within days after the index stroke. We confirm key steps of plaque destabilization also after experimental myocardial infarction and in carotid artery plaque samples from patients with acute stroke. Rapid neutrophil NETosis was identified as the main source of cell-free DNA after stroke and NET-DNA as the causative agent leading to AIM2 inflammasome activation. Neutralization of cell-free DNA by DNase treatment or inhibition of inflammasome activation reduced the rate of stroke recurrence after experimental stroke. Our findings present an explanation for the high recurrence rate after incident ischaemic events in patients with atherosclerosis. The detailed mechanisms uncovered here provide clinically uncharted therapeutic targets for which we show high efficacy to prevent recurrent events. Targeting DNA-mediated inflammasome activation after remote tissue injury represents a promising avenue for further clinical development in the prevention of early recurrent events.

3.
Brain ; 147(3): 1057-1074, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153327

RESUMO

Incomplete reperfusion of the microvasculature ('no-reflow') after ischaemic stroke damages salvageable brain tissue. Previous ex vivo studies suggest pericytes are vulnerable to ischaemia and may exacerbate no-reflow, but the viability of pericytes and their association with no-reflow remains under-explored in vivo. Using longitudinal in vivo two-photon single-cell imaging over 7 days, we showed that 87% of pericytes constrict during cerebral ischaemia and remain constricted post reperfusion, and 50% of the pericyte population are acutely damaged. Moreover, we revealed ischaemic pericytes to be fundamentally implicated in capillary no-reflow by limiting and arresting blood flow within the first 24 h post stroke. Despite sustaining acute membrane damage, we observed that over half of all cortical pericytes survived ischaemia and responded to vasoactive stimuli, upregulated unique transcriptomic profiles and replicated. Finally, we demonstrated the delayed recovery of capillary diameter by ischaemic pericytes after reperfusion predicted vessel reconstriction in the subacute phase of stroke. Cumulatively, these findings demonstrate that surviving cortical pericytes remain both viable and promising therapeutic targets to counteract no-reflow after ischaemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Pericitos/fisiologia , Infarto Cerebral
4.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279234

RESUMO

Stroke is the main cause for acquired disabilities. Pharmaceutical or mechanical removal of the thrombus is the cornerstone of stroke treatment but can only be administered to a subset of patients and within a narrow time window. Novel treatment options are therefore required. Here we induced stroke by permanent occlusion of the distal medial cerebral artery of wild-type mice and knockout mice for the lactate receptor hydroxycarboxylic acid receptor 1 (HCA1). At 24 h and 48 h after stroke induction, we injected L-lactate intraperitoneal. The resulting atrophy was measured in Nissl-stained brain sections, and capillary density and neurogenesis were measured after immunolabeling and confocal imaging. In wild-type mice, L-lactate treatment resulted in an HCA1-dependent reduction in the lesion volume accompanied by enhanced angiogenesis. In HCA1 knockout mice, on the other hand, there was no increase in angiogenesis and no reduction in lesion volume in response to L-lactate treatment. Nevertheless, the lesion volumes in HCA1 knockout mice-regardless of L-lactate treatment-were smaller than in control mice, indicating a multifactorial role of HCA1 in stroke. Our findings suggest that L-lactate administered 24 h and 48 h after stroke is protective in stroke. This represents a time window where no effective treatment options are currently available.


Assuntos
Ácido Láctico , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Ácido Láctico/farmacologia , Encéfalo/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Camundongos Knockout
5.
J Neuroinflammation ; 20(1): 301, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102677

RESUMO

Ischemic stroke is a major global health issue and characterized by acute vascular dysfunction and subsequent neuroinflammation. However, the relationship between these processes remains elusive. In the current study, we investigated whether alleviating vascular dysfunction by restoring vascular nitric oxide (NO) reduces post-stroke inflammation. Mice were subjected to experimental stroke and received inhaled NO (iNO; 50 ppm) after reperfusion. iNO normalized vascular cyclic guanosine monophosphate (cGMP) levels, reduced the elevated expression of intercellular adhesion molecule-1 (ICAM-1), and returned leukocyte adhesion to baseline levels. Reduction of vascular pathology significantly reduced the inflammatory cytokines interleukin-1ß (Il-1ß), interleukin-6 (Il-6), and tumor necrosis factor-α (TNF-α), within the brain parenchyma. These findings suggest that vascular dysfunction is responsible for leukocyte adhesion and that these processes drive parenchymal inflammation. Reversing vascular dysfunction may therefore emerge as a novel approach to diminish neuroinflammation after ischemic stroke and possibly other ischemic disorders.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Óxido Nítrico , Doenças Neuroinflamatórias , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Molécula 1 de Adesão Intercelular/metabolismo
6.
CNS Neurosci Ther ; 30(7): e14747, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973085

RESUMO

AIM: To explore the regulatory mechanisms of microglia-mediated cytotoxic CD8+ T-cell infiltration in the white matter injury of perioperative stroke (PIS). METHODS: Adult male C57BL/6 mice were subjected to ileocolic bowel resection (ICR) 24 h prior to permanent distant middle cerebral artery occlusion (dMCAO) to establish model PIS. White matter injury, functional outcomes, peripheral immune cell infiltration, and microglia phenotype were assessed up to 28 days after dMCAO using behavioral phenotyping, immunofluorescence staining, transmission electron microscopy, western blot, and FACS analysis. RESULTS: We found surgery aggravated white matter injury and deteriorated sensorimotor deficits up to 28 days following PIS. The PIS mice exhibited significantly increased activation of peripheral and central CD8+ T cells, while significantly reduced numbers of mature oligodendrocytes compared to IS mice. Neutralizing CD8+ T cells partly reversed the aggravated demyelination following PIS. Pharmacological blockage or genetic deletion of receptor-interacting protein kinase 1 (RIPK1) activity could alleviate CD8+ T-cell infiltration and demyelination in PIS mice. CONCLUSION: Surgery exacerbates demyelination and worsens neurological function by promoting infiltration of CD8+ T cells and microglia necroptosis, suggesting that modulating interactions of CD8+ T cells and microglia could be a novel therapeutic target of long-term neurological deficits of PIS.


Assuntos
Linfócitos T CD8-Positivos , Infarto da Artéria Cerebral Média , Camundongos Endogâmicos C57BL , Substância Branca , Animais , Masculino , Camundongos , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/imunologia , Substância Branca/patologia , Substância Branca/imunologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/imunologia , Microglia/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ativação Linfocitária , Modelos Animais de Doenças
7.
Sci Rep ; 14(1): 13753, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877089

RESUMO

Neuronal activity is accompanied by a net outflow of potassium ions (K+) from the intra- to the extracellular space. While extracellular [K+] changes during neuronal activity are well characterized, intracellular dynamics have been less well investigated due to lack of respective probes. In the current study we characterized the FRET-based K+ biosensor lc-LysM GEPII 1.0 for its capacity to measure intracellular [K+] changes in primary cultured neurons and in mouse cortical neurons in vivo. We found that lc-LysM GEPII 1.0 can resolve neuronal [K+] decreases in vitro during seizure-like and intense optogenetically evoked activity. [K+] changes during single action potentials could not be recorded. We confirmed these findings in vivo by expressing lc-LysM GEPII 1.0 in mouse cortical neurons and performing 2-photon fluorescence lifetime imaging. We observed an increase in the fluorescence lifetime of lc-LysM GEPII 1.0 during periinfarct depolarizations, which indicates a decrease in intracellular neuronal [K+]. Our findings suggest that lc-LysM GEPII 1.0 can be used to measure large changes in [K+] in neurons in vitro and in vivo but requires optimization to resolve smaller changes as observed during single action potentials.


Assuntos
Técnicas Biossensoriais , Neurônios , Potássio , Animais , Potássio/metabolismo , Neurônios/metabolismo , Camundongos , Técnicas Biossensoriais/métodos , Potenciais de Ação , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência/métodos , Optogenética/métodos
8.
Nat Neurosci ; 27(8): 1468-1474, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937583

RESUMO

Age-related myelin damage induces inflammatory responses, yet its involvement in Alzheimer's disease remains uncertain, despite age being a major risk factor. Using a mouse model of Alzheimer's disease, we found that amyloidosis itself triggers age-related oligodendrocyte and myelin damage. Mechanistically, CD8+ T cells promote the progressive accumulation of abnormally interferon-activated microglia that display myelin-damaging activity. Thus, our data suggest that immune responses against myelinating oligodendrocytes may contribute to neurodegenerative diseases with amyloidosis.


Assuntos
Doença de Alzheimer , Amiloidose , Modelos Animais de Doenças , Microglia , Bainha de Mielina , Animais , Microglia/patologia , Microglia/metabolismo , Microglia/imunologia , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Camundongos , Amiloidose/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/imunologia , Linfócitos T CD8-Positivos/imunologia , Camundongos Transgênicos , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA