Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
PLoS Pathog ; 19(12): e1011822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38055775

RESUMO

The advances in gene editing bring unprecedented opportunities in high throughput functional genomics to animal research. Here we describe a genome wide CRISPR knockout library, btCRISPRko.v1, targeting all protein coding genes in the cattle genome. Using it, we conducted genome wide screens during Bovine Herpes Virus type 1 (BoHV-1) replication and compiled a list of pro-viral and anti-viral candidates. These candidates might influence multiple aspects of BoHV-1 biology such as viral entry, genome replication and transcription, viral protein trafficking and virion maturation in the cytoplasm. Some of the most intriguing examples are VPS51, VPS52 and VPS53 that code for subunits of two membrane tethering complexes, the endosome-associated recycling protein (EARP) complex and the Golgi-associated retrograde protein (GARP) complex. These complexes mediate endosomal recycling and retrograde trafficking to the trans Golgi Network (TGN). Simultaneous loss of both complexes in MDBKs resulted in greatly reduced production of infectious BoHV-1 virions. We also found that viruses released by these deficient cells severely lack VP8, the most abundant tegument protein of BoHV-1 that are crucial for its virulence. In combination with previous reports, our data suggest vital roles GARP and EARP play during viral protein packaging and capsid re-envelopment in the cytoplasm. It also contributes to evidence that both the TGN and the recycling endosomes are recruited in this process, mediated by these complexes. The btCRISPRko.v1 library generated here has been controlled for quality and shown to be effective in host gene discovery. We hope it will facilitate efforts in the study of other pathogens and various aspects of cell biology in cattle.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endossomos , Animais , Bovinos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas Virais/metabolismo
2.
BMC Genomics ; 24(1): 313, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308830

RESUMO

BACKGROUND: Rewriting the genomes of living organisms has been a long-standing aim in the biological sciences. The revelation of the CRISPR/Cas9 technology has revolutionized the entire biological field. Since its emergence, this technology has been widely applied to induce gene knockouts, insertions, deletions, and base substitutions. However, the classical version of this system was imperfect for inducing or correcting desired mutations. A subsequent development generated more advanced classes, including cytosine and adenine base editors, which can be used to achieve single nucleotide substitutions. Nevertheless, these advanced systems still suffer from several limitations, such as the inability to edit loci without a suitable PAM sequence and to induce base transversions. On the other hand, the recently emerged prime editors (PEs) can achieve all possible single nucleotide substitutions as well as targeted insertions and deletions, which show promising potential to alter and correct the genomes of various organisms. Of note, the application of PE to edit livestock genomes has not been reported yet. RESULTS: In this study, using PE, we successfully generated sheep with two agriculturally significant mutations, including the fecundity-related FecBB p.Q249R and the tail length-related TBXT p.G112W. Additionally, we applied PE to generate porcine blastocysts with a biomedically relevant point mutation (KCNJ5 p.G151R) as a porcine model of human primary aldosteronism. CONCLUSIONS: Our study demonstrates the potential of the PE system to edit the genomes of large animals for the induction of economically desired mutations and for modeling human diseases. Although prime-edited sheep and porcine blastocysts could be generated, the editing frequencies are still unsatisfactory, highlighting the need for optimizations in the PE system for efficient generation of large animals with customized traits.


Assuntos
Blastocisto , Mutação Puntual , Humanos , Animais , Suínos , Ovinos , Mutação , Gado , Nucleotídeos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G
3.
Proc Natl Acad Sci U S A ; 117(39): 24195-24204, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929012

RESUMO

Spermatogonial stem cell transplantation (SSCT) is an experimental technique for transfer of germline between donor and recipient males that could be used as a tool for biomedical research, preservation of endangered species, and dissemination of desirable genetics in food animal populations. To fully realize these potentials, recipient males must be devoid of endogenous germline but possess normal testicular architecture and somatic cell function capable of supporting allogeneic donor stem cell engraftment and regeneration of spermatogenesis. Here we show that male mice, pigs, goats, and cattle harboring knockout alleles of the NANOS2 gene generated by CRISPR-Cas9 editing have testes that are germline ablated but otherwise structurally normal. In adult pigs and goats, SSCT with allogeneic donor stem cells led to sustained donor-derived spermatogenesis. With prepubertal mice, allogeneic SSCT resulted in attainment of natural fertility. Collectively, these advancements represent a major step toward realizing the enormous potential of surrogate sires as a tool for dissemination and regeneration of germplasm in all mammalian species.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Proteínas de Ligação a RNA/fisiologia , Espermatogênese , Animais , Bovinos , Feminino , Cabras , Masculino , Camundongos , Camundongos Knockout , Suínos , Testículo/anatomia & histologia , Testículo/fisiologia , Transplante Homólogo
4.
BMC Genomics ; 22(1): 563, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294050

RESUMO

BACKGROUND: New breeding technologies (NBT) using CRISPR/Cas9-induced homology directed repair (HDR) has the potential to expedite genetic improvement in aquaculture. The long generation time in Atlantic salmon makes breeding an unattractive solution to obtain homozygous mutants and improving the rates of perfect HDR in founder (F0) fish is thus required. Genome editing can represent small DNA changes down to single nucleotide replacements (SNR). This enables edits such as premature stop codons or single amino acid changes and may be used to obtain fish with traits favorable to aquaculture, e.g. disease resistance. A method for SNR has not yet been demonstrated in salmon. RESULTS: Using CRISPR/Cas9 and asymmetrical ODNs, we were able to perform precise SNR and introduce a premature stop codon in dnd in F0 salmon. Deep sequencing demonstrated up to 59.2% efficiency in single embryos. In addition, using the same asymmetrical ODN design, we inserted a FLAG element into slc45a2 and dnd, showing high individual perfect HDR efficiencies (up to 36.7 and 32.7%, respectively). CONCLUSIONS: In this work, we demonstrate that precise SNR and knock-in (KI) can be performed in F0 salmon embryos using asymmetrical oligonucleotide (ODN) donors. We suggest that HDR-induced SNR can be applied as a powerful NBT, allowing efficient introgression of favorable alleles and bypassing challenges associated with traditional selective breeding.


Assuntos
Sistemas CRISPR-Cas , Salmo salar , Alelos , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Nucleotídeos , Oligonucleotídeos , Salmo salar/genética
5.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269123

RESUMO

Avian influenza viruses occasionally infect and adapt to mammals, including humans. Swine are often described as "mixing vessels," being susceptible to both avian- and human-origin viruses, which allows the emergence of novel reassortants, such as the precursor to the 2009 H1N1 pandemic. ANP32 proteins are host factors that act as influenza virus polymerase cofactors. In this study, we describe how swine ANP32A, uniquely among the mammalian ANP32 proteins tested, supports the activity of avian-origin influenza virus polymerases and avian influenza virus replication. We further show that after the swine-origin influenza virus emerged in humans and caused the 2009 pandemic, it evolved polymerase gene mutations that enabled it to more efficiently use human ANP32 proteins. We map the enhanced proviral activity of swine ANP32A to a pair of amino acids, 106 and 156, in the leucine-rich repeat and central domains and show these mutations enhance binding to influenza virus trimeric polymerase. These findings help elucidate the molecular basis for the mixing vessel trait of swine and further our understanding of the evolution and ecology of viruses in this host.IMPORTANCE Avian influenza viruses can jump from wild birds and poultry into mammalian species such as humans or swine, but they only continue to transmit if they accumulate mammalian adapting mutations. Pigs appear uniquely susceptible to both avian and human strains of influenza and are often described as virus "mixing vessels." In this study, we describe how a host factor responsible for regulating virus replication, ANP32A, is different between swine and humans. Swine ANP32A allows a greater range of influenza viruses, specifically those from birds, to replicate. It does this by binding the virus polymerase more tightly than the human version of the protein. This work helps to explain the unique properties of swine as mixing vessels.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Proteínas Nucleares/genética , Infecções por Orthomyxoviridae/genética , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Animais , Sítios de Ligação , Linhagem Celular , Galinhas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Especificidade de Hospedeiro , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Modelos Moleculares , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Transdução de Sinais , Suínos , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
6.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29925651

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 protein is expressed at high levels on the surface of specific macrophage types, and a soluble form is circulating in blood. CD163 has been described as a fusion receptor for PRRSV, with the scavenger receptor cysteine-rich domain 5 (SRCR5) region having been shown to be the interaction site for the virus. As reported previously, we have generated pigs in which exon 7 of the CD163 gene has been deleted using CRISPR/Cas9 editing in pig zygotes. These pigs express CD163 protein lacking SRCR5 (ΔSRCR5 CD163) and show no adverse effects when maintained under standard husbandry conditions. Not only was ΔSRCR5 CD163 detected on the surface of macrophage subsets, but the secreted, soluble protein can also be detected in the serum of the edited pigs, as shown here by a porcine soluble CD163-specific enzyme-linked immunosorbent assay (ELISA). Previous results showed that primary macrophage cells from ΔSRCR5 CD163 animals are resistant to PRRSV-1 subtype 1, 2, and 3 as well as PRRSV-2 infection in vitro Here, ΔSRCR5 pigs were challenged with a highly virulent PRRSV-1 subtype 2 strain. In contrast to the wild-type control group, ΔSRCR5 pigs showed no signs of infection and no viremia or antibody response indicative of a productive infection. Histopathological analysis of lung and lymph node tissue showed no presence of virus-replicating cells in either tissue. This shows that ΔSRCR5 pigs are fully resistant to infection by the virus.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) is the etiological agent of PRRS, causing late-term abortions, stillbirths, and respiratory disease in pigs, incurring major economic losses to the worldwide pig industry. The virus is highly mutagenic and can be divided into two species, PRRSV-1 and PRRSV-2, each containing several subtypes. Current control strategies mainly involve biosecurity measures, depopulation, and vaccination. Vaccines are at best only partially protective against infection with heterologous subtypes and sublineages, and modified live vaccines have frequently been reported to revert to virulence. Here, we demonstrate that a genetic-control approach results in complete resistance to PRRSV infection in vivo CD163 is edited so as to remove the viral interaction domain while maintaining protein expression and biological function, averting any potential adverse effect associated with protein knockout. This research demonstrates a genetic-control approach with potential benefits in animal welfare as well as to the pork industry.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Resistência à Doença , Proteínas Mutantes/metabolismo , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores Depuradores/metabolismo , Receptores Virais/metabolismo , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Ensaio de Imunoadsorção Enzimática , Macrófagos/química , Proteínas Mutantes/genética , Receptores de Superfície Celular/genética , Receptores Depuradores/genética , Receptores Virais/genética , Deleção de Sequência , Soro/química , Suínos
7.
PLoS Pathog ; 13(2): e1006206, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28231264

RESUMO

Porcine Reproductive and Respiratory Syndrome (PRRS) is a panzootic infectious disease of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests differently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV, whereby the scavenger receptor cysteine-rich domain 5 (SRCR5) region was shown to be an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of macrophages, particularly in the respiratory system. Here we describe the application of CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs maintained under standard husbandry conditions with normal growth rates and complete blood counts observed. Pulmonary alveolar macrophages (PAMs) and peripheral blood monocytes (PBMCs) were isolated from the animals and assessed in vitro. Both PAMs and macrophages obtained from PBMCs by CSF1 stimulation (PMMs) show the characteristic differentiation and cell surface marker expression of macrophages of the respective origin. Expression and correct folding of the SRCR5 deletion CD163 on the surface of macrophages and biological activity of the protein as hemoglobin-haptoglobin scavenger was confirmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3 and PMMs with PRRSV genotype 2 showed complete resistance to viral infections assessed by replication. Confocal microscopy revealed the absence of replication structures in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to gene expression, i.e. at entry/fusion or unpacking stages.


Assuntos
Macrófagos/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Receptores de Superfície Celular/deficiência , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Western Blotting , Citometria de Fluxo , Imunofluorescência , Edição de Genes/métodos , Genoma , Genótipo , Macrófagos/imunologia , Macrófagos/metabolismo , Microscopia Confocal , Reação em Cadeia da Polimerase , Receptores de Superfície Celular/genética , Suínos
8.
Transgenic Res ; 28(Suppl 2): 57-60, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321684

RESUMO

Animal husbandry is believed to predate farming of crops, and remains a core component of most agricultural systems. Historic breeding strategies were based largely on visual observation, crossing animals that were perceived to display enhanced merit. Advances in sequencing capacity coupled with reduced costs have allowed genomic selection tools to deliver significant contribution to breeding regimes. The application of genome editors to make specific changes to livestock genomes has the potential to deliver additional benefits.


Assuntos
Produtos Agrícolas/genética , Edição de Genes/tendências , Genômica , Criação de Animais Domésticos/tendências , Cruzamento , Produtos Agrícolas/crescimento & desenvolvimento , Engenharia Genética/tendências , Genoma/genética , Humanos
9.
BMC Biotechnol ; 18(1): 82, 2018 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-30594166

RESUMO

BACKGROUND: The global market for protein drugs has the highest compound annual growth rate of any pharmaceutical class but their availability, especially outside of the US market, is compromised by the high cost of manufacture and validation compared to traditional chemical drugs. Improvements in transgenic technologies allow valuable proteins to be produced by genetically-modified animals; several therapeutic proteins from such animal bioreactors are already on the market after successful clinical trials and regulatory approval. Chickens have lagged behind mammals in bioreactor development, despite a number of potential advantages, due to the historic difficulty in producing transgenic birds, but the production of therapeutic proteins in egg white of transgenic chickens would substantially lower costs across the entire production cycle compared to traditional cell culture-based production systems. This could lead to more affordable treatments and wider markets, including in developing countries and for animal health applications. RESULTS: Here we report the efficient generation of new transgenic chicken lines to optimize protein production in eggs. As proof-of-concept, we describe the expression, purification and functional characterization of three pharmaceutical proteins, the human cytokine interferon α2a and two species-specific Fc fusions of the cytokine CSF1. CONCLUSION: Our work optimizes and validates a transgenic chicken system for the cost-effective production of pure, high quality, biologically active protein for therapeutics and other applications.


Assuntos
Animais Geneticamente Modificados/genética , Biotecnologia/métodos , Galinhas/genética , Citocinas/genética , Animais , Animais Geneticamente Modificados/metabolismo , Reatores Biológicos/economia , Biotecnologia/economia , Galinhas/metabolismo , Citocinas/economia , Citocinas/metabolismo , Humanos , Interferon-alfa/economia , Interferon-alfa/genética , Interferon-alfa/metabolismo , Fator Estimulador de Colônias de Macrófagos/economia , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteínas Recombinantes/economia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
J Immunol ; 197(6): 2297-305, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521343

RESUMO

Expression of Csf1r in adults is restricted to cells of the macrophage lineage. Transgenic reporters based upon the Csf1r locus require inclusion of the highly conserved Fms-intronic regulatory element for expression. We have created Csf1r-EGFP transgenic sheep via lentiviral transgenesis of a construct containing elements of the mouse Fms-intronic regulatory element and Csf1r promoter. Committed bone marrow macrophage precursors and blood monocytes express EGFP in these animals. Sheep monocytes were divided into three populations, similar to classical, intermediate, and nonclassical monocytes in humans, based upon CD14 and CD16 expression. All expressed EGFP, with increased levels in the nonclassical subset. Because Csf1r expression coincides with the earliest commitment to the macrophage lineage, Csf1r-EGFP bone marrow provides a tool for studying the earliest events in myelopoiesis using the sheep as a model.


Assuntos
Animais Geneticamente Modificados/imunologia , Biomarcadores/sangue , Proteínas de Fluorescência Verde/genética , Macrófagos/fisiologia , Monócitos/fisiologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Diferenciação Celular , Humanos , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Mielopoese , Regiões Promotoras Genéticas , Receptores de IgG/genética , Receptores de IgG/imunologia , Ovinos/genética , Transgenes
11.
J Pathol ; 238(2): 247-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26414877

RESUMO

The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site-specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Engenharia Genética/métodos , Mutação/genética , Alelos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Pesquisas com Embriões , Previsões , Mutação da Fase de Leitura/genética , Engenharia Genética/tendências , Humanos , Técnicas de Transferência Nuclear , Primatas , Suínos , Ativação Transcricional/genética , Dedos de Zinco/genética
13.
Transgenic Res ; 25(3): 273-87, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26847670

RESUMO

One of the most powerful strategies to investigate biology we have as scientists, is the ability to transfer genetic material in a controlled and deliberate manner between organisms. When applied to livestock, applications worthy of commercial venture can be devised. Although initial methods used to generate transgenic livestock resulted in random transgene insertion, the development of SCNT technology enabled homologous recombination gene targeting strategies to be used in livestock. Much has been accomplished using this approach. However, now we have the ability to change a specific base in the genome without leaving any other DNA mark, with no need for a transgene. With the advent of the genome editors this is now possible and like other significant technological leaps, the result is an even greater diversity of possible applications. Indeed, in merely 5 years, these 'molecular scissors' have enabled the production of more than 300 differently edited pigs, cattle, sheep and goats. The advent of genome editors has brought genetic engineering of livestock to a position where industry, the public and politicians are all eager to see real use of genetically engineered livestock to address societal needs. Since the first transgenic livestock reported just over three decades ago the field of livestock biotechnology has come a long way-but the most exciting period is just starting.


Assuntos
Biotecnologia/métodos , Edição de Genes/tendências , Marcação de Genes/tendências , Recombinação Homóloga/genética , Animais , Animais Geneticamente Modificados/genética , Bovinos , Genoma , Cabras/genética , Gado/genética , Ovinos/genética , Suínos/genética
14.
J Dairy Res ; 83(1): 3-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26869106

RESUMO

It has been thirty years since the first genetically engineered animal with altered milk composition was reported. During the intervening years, the world population has increased from 5bn to 7bn people. An increasing demand for protein in the human diet has followed this population expansion, putting huge stress on the food supply chain. Many solutions to the grand challenge of food security for all have been proposed and are currently under investigation and study. Amongst these, genetics still has an important role to play, aiming to continually enable the selection of livestock with enhanced traits. Part of the geneticist's tool box is the technology of genetic engineering. In this Invited Review, we indicate that this technology has come a long way, we focus on the genetic engineering of dairy animals and we argue that the new strategies for precision breeding demand proper evaluation as to how they could contribute to the essential increases in agricultural productivity our society must achieve.


Assuntos
Engenharia Genética/veterinária , Proteínas do Leite/metabolismo , Leite/fisiologia , Animais , Bovinos , Abastecimento de Alimentos , Regulação da Expressão Gênica , Engenharia Genética/métodos , Humanos , Proteínas do Leite/genética
15.
Transgenic Res ; 24(1): 147-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25204701

RESUMO

Genome editing tools enable efficient and accurate genome manipulation. An enhanced ability to modify the genomes of livestock species could be utilized to improve disease resistance, productivity or breeding capability as well as the generation of new biomedical models. To date, with respect to the direct injection of genome editor mRNA into livestock zygotes, this technology has been limited to the generation of pigs with edited genomes. To capture the far-reaching applications of gene-editing, from disease modelling to agricultural improvement, the technology must be easily applied to a number of species using a variety of approaches. In this study, we demonstrate zygote injection of TALEN mRNA can also produce gene-edited cattle and sheep. In both species we have targeted the myostatin (MSTN) gene. In addition, we report a critical innovation for application of gene-editing to the cattle industry whereby gene-edited calves can be produced with specified genetics by ovum pickup, in vitro fertilization and zygote microinjection (OPU-IVF-ZM). This provides a practical alternative to somatic cell nuclear transfer for gene knockout or introgression of desirable alleles into a target breed/genetic line.


Assuntos
Animais Geneticamente Modificados/genética , Genoma , Miostatina/genética , Carneiro Doméstico/genética , Animais , Cruzamento , Bovinos , Fertilização in vitro , Engenharia Genética , Gado , Técnicas de Transferência Nuclear , Zigoto
16.
Biotechnol Bioeng ; 112(5): 1060-4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25362885

RESUMO

The CRISPR/Cas9 system has emerged as an intriguing new technology for genome engineering. It utilizes the bacterial endonuclease Cas9 which, when delivered to eukaryotic cells in conjunction with a user-specified small guide RNA (gRNA), cleaves the chromosomal DNA at the target site. Here we show that concurrent delivery of gRNAs designed to target two different sites in a human chromosome introduce DNA double-strand breaks in the chromosome and give rise to targeted deletions of the intervening genomic segment. Predetermined genomic DNA segments ranging from several-hundred base pairs to 1 Mbp can be precisely deleted at frequencies of 1-10%, with no apparent correlation between the size of the deleted fragment and the deletion frequency. The high efficiency of this technique holds promise for large genomic deletions that could be useful in generation of cell and animal models with engineered chromosomes.


Assuntos
Deleção Cromossômica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Quebras de DNA de Cadeia Dupla , DNA/genética , Marcação de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Sequência de Bases , Linhagem Celular , Endonucleases/genética , Engenharia Genética/métodos , Humanos , Dados de Sequência Molecular
17.
Proc Natl Acad Sci U S A ; 109(43): 17382-7, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23027955

RESUMO

Transcription activator-like effector nucleases (TALENs) are programmable nucleases that join FokI endonuclease with the modular DNA-binding domain of TALEs. Although zinc-finger nucleases enable a variety of genome modifications, their application to genetic engineering of livestock has been slowed by technical limitations of embryo-injection, culture of primary cells, and difficulty in producing reliable reagents with a limited budget. In contrast, we found that TALENs could easily be manufactured and that over half (23/36, 64%) demonstrate high activity in primary cells. Cytoplasmic injections of TALEN mRNAs into livestock zygotes were capable of inducing gene KO in up to 75% of embryos analyzed, a portion of which harbored biallelic modification. We also developed a simple transposon coselection strategy for TALEN-mediated gene modification in primary fibroblasts that enabled both enrichment for modified cells and efficient isolation of modified colonies. Coselection after treatment with a single TALEN-pair enabled isolation of colonies with mono- and biallelic modification in up to 54% and 17% of colonies, respectively. Coselection after treatment with two TALEN-pairs directed against the same chromosome enabled the isolation of colonies harboring large chromosomal deletions and inversions (10% and 4% of colonies, respectively). TALEN-modified Ossabaw swine fetal fibroblasts were effective nuclear donors for cloning, resulting in the creation of miniature swine containing mono- and biallelic mutations of the LDL receptor gene as models of familial hypercholesterolemia. TALENs thus appear to represent a highly facile platform for the modification of livestock genomes for both biomedical and agricultural applications.


Assuntos
Técnicas de Inativação de Genes , Gado/genética , Fatores de Transcrição/genética , Alelos , Animais , Sequência de Bases , Bovinos , Deleção Cromossômica , Inversão Cromossômica , Clonagem de Organismos , DNA , Elementos de DNA Transponíveis , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Suínos
18.
Biotechnol J ; 19(2): e2300287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047759

RESUMO

Gene loci of highly expressed genes provide ideal sites for transgene expression. Casein genes are highly expressed in mammals leading to the synthesis of substantial amounts of casein proteins in milk. The α-casein (CSN1S1) gene has assessed as a site of transgene expression in transgenic mice and a mammary gland cell line. A transgene encoding an antibody light chain gene (A1L) was inserted into the α-casein gene using sequential homologous and site-specific recombination. Expression of the inserted transgene is directed by the α-casein promoter, is responsive to lactogenic hormone activation, leads to the synthesis of a chimeric α-casein/A1L transgene mRNA, and secretion of the recombinant A1L protein into milk. Transgene expression is highly consistent in all transgenic lines, but lower than that of the α-casein gene (4%). Recombinant A1L protein accounted for 0.5% and 1.6% of total milk protein in heterozygous and homozygous transgenic mice, respectively. The absence of the α-casein protein in homozygous A1L transgenic mice leads to a reduction of total milk protein and delayed growth of the pups nursed by these mice. Overall, the data demonstrate that the insertion of a transgene into a highly expressed endogenous gene is insufficient to guarantee its abundant expression.


Assuntos
Caseínas , Lactação , Feminino , Camundongos , Animais , Caseínas/genética , Caseínas/metabolismo , Lactação/genética , Lactação/metabolismo , Camundongos Transgênicos , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Proteínas Recombinantes/metabolismo , Transgenes/genética , Glândulas Mamárias Animais/metabolismo , Mamíferos/genética
19.
Viruses ; 16(2)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400072

RESUMO

To identify host factors that affect Bovine Herpes Virus Type 1 (BoHV-1) infection we previously applied a genome wide CRISPR knockout screen targeting all bovine protein coding genes. By doing so we compiled a list of both pro-viral and anti-viral proteins involved in BoHV-1 replication. Here we provide further analysis of those that are potentially involved in viral entry into the host cell. We first generated single cell knockout clones deficient in some of the candidate genes for validation. We provide evidence that Polio Virus Receptor-related protein (PVRL2) serves as a receptor for BoHV-1, mediating more efficient entry than the previously identified Polio Virus Receptor (PVR). By knocking out two enzymes that catalyze HSPG chain elongation, HST2ST1 and GLCE, we further demonstrate the significance of HSPG in BoHV-1 entry. Another intriguing cluster of candidate genes, COG1, COG2 and COG4-7 encode six subunits of the Conserved Oligomeric Golgi (COG) complex. MDBK cells lacking COG6 produced fewer but bigger plaques compared to control cells, suggesting more efficient release of newly produced virions from these COG6 knockout cells, due to impaired HSPG biosynthesis. We further observed that viruses produced by the COG6 knockout cells consist of protein(s) with reduced N-glycosylation, potentially explaining their lower infectivity. To facilitate candidate validation, we also detailed a one-step multiplex CRISPR interference (CRISPRi) system, an orthogonal method to KO that enables quick and simultaneous deployment of three CRISPRs for efficient gene inactivation. Using CRISPR3i, we verified eight candidates that have been implicated in the synthesis of surface heparan sulfate proteoglycans (HSPGs). In summary, our experiments confirmed the two receptors PVR and PVRL2 for BoHV-1 entry into the host cell and other factors that affect this process, likely through the direct or indirect roles they play during HSPG synthesis and glycosylation of viral proteins.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Poliomielite , Humanos , Proteoglicanas de Heparan Sulfato , Internalização do Vírus , Receptores Virais/genética , Proteínas de Transporte
20.
Transgenic Res ; 22(2): 425-34, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22983824

RESUMO

Development of the mammary gland requires the coordinated action of proteolytic enzymes during two phases of remodelling. Firstly, new ducts and side-branches thereof need to be established during pregnancy to generate an extensive ductal tree allowing the secretion and transport of milk. A second wave of remodelling occurs during mammary involution after weaning. We have analysed the role of the cell surface protease aminopeptidase N (Anpep, APN, CD13) during these processes using Anpep deficient and Anpep over-expressing mice. We find that APN deficiency significantly delays mammary gland morphogenesis during gestation. The defect is characterised by a reduction in alveolar buds and duct branching at mid-pregnancy. Conversely over-expression of Anpep leads to accelerated ductal development. This indicates that Anpep plays a critical role in the proteolytic remodelling of mammary tissue during adult mammary development.


Assuntos
Antígenos CD13/genética , Células Epiteliais/enzimologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Morfogênese/genética , Animais , Células Epiteliais/citologia , Feminino , Humanos , Glândulas Mamárias Animais/metabolismo , Camundongos , Gravidez , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA