Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 30(2): 333-342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068414

RESUMO

BACKGROUND: Infants admitted to neonate intensive care units (NICUs) are placed in incubators to maintain body temperature and condition, which undergo normal radiographs and are exposed to radiation. Furthermore, different incubator structures in different hospitals exhibit varying object to image receptor distance (OID), source to image receptor distance (SID), presence of canopy, which results in variations in X-ray radiation conditions and doses absorbed by the neonatal patients. OBJECTIVE: To measure organ dose exposed to neonatal patient in different incubator settings. METHODS: A portable X-ray was performed on a neonatal patient placed in an incubator to identify disease progress, the injection path of the drug, and various factors. To minimize direct contact between neonatal patients and image receptor, radiologic technologists place the image receptor on a tray underneath the incubator and place the portable X-ray tube on top of the acrylic canopy of the incubators. SID and OID settings and value of organ dose exposed to the patient varied based on the incubator structure, and the organ absorbed dose was determined using Monte Carlo N-Particle (MCNP) simulation, PC-based Monte Carlo program (PCXMC) 2.0 simulation, and neonate phantoms. RESULTS: Evaluations of organ dose of neonatal patients in three hospitals with different incubator settings reveal that the average organ dose differs by 36% depending on change in OID and SID settings and reduces by 10% with an acrylic canopy. Therefore, owing to the presence of an acrylic canopy on the top of the incubator and the longer SID with the corresponding shorter OID, a lower dose was absorbed by organs of neonatal patient. CONCLUSION: Our results provide proof that proper incubator standard decreases organ dose to neonatal patient during continuously diagnostic X-ray procedure.


Assuntos
Incubadoras , Humanos , Lactente , Recém-Nascido , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Radiografia , Raios X
2.
J Breast Cancer ; 15(1): 105-10, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22493636

RESUMO

PURPOSE: Adjuvant radiotherapy of breast cancer using a photon tangential field incurs a risk of late heart and lung toxicity. The use of free breathing (FB), expiration breath hold (EBH), and deep inspiration breath hold (DIBH) during tangential breast radiotherapy as a means of reducing irradiated lung and heart volume was evaluated. METHODS: In 10 women with left-sided breast cancer (mean age, 44 years) post-operative computed tomography (CT) scanning was done under different respiratory conditions using FB, EBH, and DIBH in 3 CT scans. For each scan, an optimized radiotherapy plan was designed with 6 MV photon tangential fields encompassing the clinical target volume after breast-conserving surgery. RESULTS: The results of dose-volume histograms were compared using three breathing pattern techniques for the irradiated volume and dose to the heart. A significant reduction dose to the irradiated heart volume for the DIBH breathing technique was compared to FB and EBH breathing techniques (p<0.05). CONCLUSION: This study demonstrated that the irradiated heart volume can be significantly reduced in patients with left-sided breast cancer using the DIBH breathing technique for tangential radiotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA