Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(35): 19283-19292, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37585603

RESUMO

Precise tailoring of the aggregation state of covalent organic frameworks (COFs) to form a hierarchical porous structure is critical to their performance and applications. Here, we report a one-pot and one-step strategy of using dynamic combinatorial chemistry to construct imine-based hollow COFs containing meso- and macropores. It relies on a direct copolymerization of three or more monomers in the presence of two monofunctional competitors. The resulting particle products possess high crystallinity and hierarchical pores, including micropores around 0.93 nm, mesopores widely distributed in the range of 3.1-32 nm, and macropores at about 500 nm, while the specific surface area could be up to 748 m2·g-1, with non-micropores accounting for 60% of the specific surface area. The particles demonstrate unique advantages in the application as nanocarriers for in situ loading of Pd catalysts at 93.8% loading efficiency in the copolymerization of ethylene and carbon monoxide. The growth and assembly of the copolymer could thus be regulated to form flower-shaped particles, efficiently suppressing the fouling of the reactor. The copolymer's weight-average molecular weight and the melting temperature are also highly improved. Our method provides a facile way of fabricating COFs with hierarchical pores for advanced applications in catalysis.

2.
Small ; 19(49): e2303639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37608461

RESUMO

Electrochromic smart windows (ESWs) offer an attractive option for regulating indoor lighting conditions. Electrochromic materials based on ion insertion/desertion mechanisms also present the possibility for energy storage, thereby increasing overall energy efficiency and adding value to the system. However, current electrochromic electrodes suffer from performance degradation, long response time, and low coloration efficiency. This work aims to produce defect-engineered brookite titanium dioxide (TiO2 ) nanorods (NRs) with different lengths and investigate their electrochromic performance as potential energy storage materials. The controllable synthesis of TiO2 NRs with inherent defects, along with smaller impedance and higher carrier concentrations, significantly enhances their electrochromic performance, including improved resistance to degradation, shorter response times, and enhanced coloration efficiency. The electrochromic performance of TiO2 NRs, particularly longer ones, is characterized by fast switching speeds (20 s for coloration and 12 s for bleaching), high coloration efficiency (84.96 cm2  C-1 at a 600 nm wavelength), and good stability, highlighting their potential for advanced electrochromic smart window applications based on Li+ ion intercalation.

3.
Angew Chem Int Ed Engl ; 62(40): e202305644, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37325872

RESUMO

Chemical upcycling of polyethylene (PE) can convert plastic waste into valuable resources. However, engineering a catalyst that allows PE decomposition at low temperatures with high activity remains a significant challenge. Herein, we anchored 0.2 wt.% platinum (Pt) on defective two-dimensional tungsten trioxide (2D WO3 ) nanosheets and achieved hydrocracking of high-density polyethylene (HDPE) waste at 200-250 °C with a liquid fuel (C5-18 ) formation rate up to 1456 gproducts ⋅ gmetal species -1 ⋅ h-1 . The reaction pathway over the bifunctional 2D Pt/WO3 is elucidated by quasi-operando transmission infrared spectroscopy, where (I) well-dispersed Pt immobilized on 2D WO3 nanosheets trigger the dissociation of hydrogen; (II) adsorption of PE and activation of C-C cleavage on WO3 are through the formation of C=O/C=C intermediates; (III) intermediates are converted to alkane products by the dissociated H. Our study directly illustrates the synergistic role of bifunctional Pt/WO3 catalyst in the hydrocracking of HDPE, paving the way for the development of high-performance catalysts with optimized chemical and morphological properties.

4.
Nano Lett ; 18(4): 2557-2563, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29546994

RESUMO

Bottom-up approaches for producing bulk nanomaterials have traditionally lacked control over the crystallographic alignment of nanograins. This limitation has prevented nanocrystal-based nanomaterials from achieving optimized performances in numerous applications. Here we demonstrate the production of nanostructured Bi xSb2- xTe3 alloys with controlled stoichiometry and crystallographic texture through proper selection of the starting building blocks and the adjustment of the nanocrystal-to-nanomaterial consolidation process. In particular, we hot pressed disk-shaped Bi xSb2- xTe3 nanocrystals and tellurium nanowires using multiple pressure and release steps at a temperature above the tellurium melting point. We explain the formation of the textured nanomaterials though a solution-reprecipitation mechanism under a uniaxial pressure. Additionally, we further demonstrate these alloys to reach unprecedented thermoelectric figures of merit, up to ZT = 1.96 at 420 K, with an average value of ZTave = 1.77 for the record material in the temperature range 320-500 K, thus potentially allowing up to 60% higher energy conversion efficiencies than commercial materials.

5.
Angew Chem Int Ed Engl ; 57(52): 17063-17068, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30398301

RESUMO

In the present work, we detail a fast and simple solution-based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation-driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower-like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three-fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65.

6.
Small Methods ; 8(8): e2301377, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38152986

RESUMO

Developing cost-effective and high-performance thermoelectric (TE) materials to assemble efficient TE devices presents a multitude of challenges and opportunities. Cu3SbSe4 is a promising p-type TE material based on relatively earth abundant elements. However, the challenge lies in its poor electrical conductivity. Herein, an efficient and scalable solution-based approach is developed to synthesize high-quality Cu3SbSe4 nanocrystals doped with Pb at the Sb site. After ligand displacement and annealing treatments, the dried powders are consolidated into dense pellets, and their TE properties are investigated. Pb doping effectively increases the charge carrier concentration, resulting in a significant increase in electrical conductivity, while the Seebeck coefficients remain consistently high. The calculated band structure shows that Pb doping induces band convergence, thereby increasing the effective mass. Furthermore, the large ionic radius of Pb2+ results in the generation of additional point and plane defects and interphases, dramatically enhancing phonon scattering, which significantly decreases the lattice thermal conductivity at high temperatures. Overall, a maximum figure of merit (zTmax) ≈ 0.85 at 653 K is obtained in Cu3Sb0.97Pb0.03Se4. This represents a 1.6-fold increase compared to the undoped sample and exceeds most doped Cu3SbSe4-based materials produced by solid-state, demonstrating advantages of versatility and cost-effectiveness using a solution-based technology.

7.
ACS Appl Electron Mater ; 6(5): 2807-2815, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38828037

RESUMO

The direct, solid state, and reversible conversion between heat and electricity using thermoelectric devices finds numerous potential uses, especially around room temperature. However, the relatively high material processing cost limits their real applications. Silver selenide (Ag2Se) is one of the very few n-type thermoelectric (TE) materials for room-temperature applications. Herein, we report a room temperature, fast, and aqueous-phase synthesis approach to produce Ag2Se, which can be extended to other metal chalcogenides. These materials reach TE figures of merit (zT) of up to 0.76 at 380 K. To improve these values, bismuth sulfide (Bi2S3) particles also prepared in an aqueous solution are incorporated into the Ag2Se matrix. In this way, a series of Ag2Se/Bi2S3 composites with Bi2S3 wt % of 0.5, 1.0, and 1.5 are prepared by solution blending and hot-press sintering. The presence of Bi2S3 significantly improves the Seebeck coefficient and power factor while at the same time decreasing the thermal conductivity with no apparent drop in electrical conductivity. Thus, a maximum zT value of 0.96 is achieved in the composites with 1.0 wt % Bi2S3 at 370 K. Furthermore, a high average zT value (zTave) of 0.93 in the 300-390 K range is demonstrated.

8.
Dalton Trans ; 52(39): 14003-14011, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740283

RESUMO

Transition metal tellurides (TMTes) have received extensive attention for high specific energy sodium-ion batteries (SIBs) due to their high volumetric specific capacity. However, the continuous capacity attenuation arising from the huge volumetric strain during sodiation/desodiation impedes practical applications. Here, we report a "sandwich-type" carbon confinement strategy that entraps cobalt ditelluride (CoTe2) nanocrystals between two carbon layers. Porous cellulose-derived fibres were employed as the inner carbon framework to construct fast conductive circuits and provide an abundant site for anchoring CoTe2 nanocrystals. Polyvinylpyrrolidone (PVP)-derived carbon layers act as carbon armour to encapsulate CoTe2 nanocrystals, inhibiting their volume change and structural pulverization during repeated sodium intercalation/deintercalation. Benefiting from the exquisite structural design, the N-C@CoTe2@C electrode exhibits excellent cycling stability for over 3000 cycles at 2.0 A g-1 and rate performance (113.8 mA h g-1 at 5.0 A g-1). Moreover, ex situ XRD/TEM and kinetic tests revealed a multistep conversion reaction mechanism and a battery-capacitive dual-model Na-storage process. This work provides a new perspective on the development of low-cost and straightforward techniques for fabricating long-life commercial SIB anode materials.

9.
ACS Nano ; 17(15): 14686-14694, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459214

RESUMO

Natural plant fibers such as cotton have favorable performance in water and moisture management; however, they suffer from inferior processing ability due to limited diameter and length, as well as natural defects. Although commercially available regenerated cellulose fibers such as lyocell fibers can have tunable structures, they rely on the complete dissolution of cellulose molecules, including the highly crystalline parts, leading to inferior mechanical properties. Through a specially designed coaxial wet-spinning process, we prepare a type of hollow fiber using only cellulose nanofibrils (CNFs) as building blocks. It mimics cotton fibers with a lumen structure but with a tunable diameter and a long length. Moreover, such hollow fibers have superior mechanical properties with a Young's modulus of 24.7 GPa and tensile strength of 341 MPa, surpassing lyocell fibers and most wet-spun CNF-based fibers. Importantly, they have 10 times higher wicking ability, wetting rate, drying rate, and maximum wetting ratio compared to lyocell fibers. Together with a superior long-term performance after 500 rounds of wetting-drying tests, such CNF-based hollow fibers are sustainable choices for advanced textile applications. And this study provides a greater understanding of nanoscale building blocks and their assembled macromaterials, which may help to reveal the magic hierarchical design of natural materials, in this case, plant fibers.

10.
ACS Nano ; 17(12): 11923-11934, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310395

RESUMO

AgSbSe2 is a promising thermoelectric (TE) p-type material for applications in the middle-temperature range. AgSbSe2 is characterized by relatively low thermal conductivities and high Seebeck coefficients, but its main limitation is moderate electrical conductivity. Herein, we detail an efficient and scalable hot-injection synthesis route to produce AgSbSe2 nanocrystals (NCs). To increase the carrier concentration and improve the electrical conductivity, these NCs are doped with Sn2+ on Sb3+ sites. Upon processing, the Sn2+ chemical state is conserved using a reducing NaBH4 solution to displace the organic ligand and anneal the material under a forming gas flow. The TE properties of the dense materials obtained from the consolidation of the NCs using a hot pressing are then characterized. The presence of Sn2+ ions replacing Sb3+ significantly increases the charge carrier concentration and, consequently, the electrical conductivity. Opportunely, the measured Seebeck coefficient varied within a small range upon Sn doping. The excellent performance obtained when Sn2+ ions are prevented from oxidation is rationalized by modeling the system. Calculated band structures disclosed that Sn doping induces convergence of the AgSbSe2 valence bands, accounting for an enhanced electronic effective mass. The dramatically enhanced carrier transport leads to a maximized power factor for AgSb0.98Sn0.02Se2 of 0.63 mW m-1 K-2 at 640 K. Thermally, phonon scattering is significantly enhanced in the NC-based materials, yielding an ultralow thermal conductivity of 0.3 W mK-1 at 666 K. Overall, a record-high figure of merit (zT) is obtained at 666 K for AgSb0.98Sn0.02Se2 at zT = 1.37, well above the values obtained for undoped AgSbSe2, at zT = 0.58 and state-of-art Pb- and Te-free materials, which makes AgSb0.98Sn0.02Se2 an excellent p-type candidate for medium-temperature TE applications.

11.
ACS Appl Mater Interfaces ; 15(19): 23380-23389, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37141543

RESUMO

There is a need for the development of lead-free thermoelectric materials for medium-/high-temperature applications. Here, we report a thiol-free tin telluride (SnTe) precursor that can be thermally decomposed to produce SnTe crystals with sizes ranging from tens to several hundreds of nanometers. We further engineer SnTe-Cu2SnTe3 nanocomposites with a homogeneous phase distribution by decomposing the liquid SnTe precursor containing a dispersion of Cu1.5Te colloidal nanoparticles. The presence of Cu within the SnTe and the segregated semimetallic Cu2SnTe3 phase effectively improves the electrical conductivity of SnTe while simultaneously reducing the lattice thermal conductivity without compromising the Seebeck coefficient. Overall, power factors up to 3.63 mW m-1 K-2 and thermoelectric figures of merit up to 1.04 are obtained at 823 K, which represent a 167% enhancement compared with pristine SnTe.

12.
ACS Nano ; 17(9): 8442-8452, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37071412

RESUMO

Cu2-xS and Cu2-xSe have recently been reported as promising thermoelectric (TE) materials for medium-temperature applications. In contrast, Cu2-xTe, another member of the copper chalcogenide family, typically exhibits low Seebeck coefficients that limit its potential to achieve a superior thermoelectric figure of merit, zT, particularly in the low-temperature range where this material could be effective. To address this, we investigated the TE performance of Cu1.5-xTe-Cu2Se nanocomposites by consolidating surface-engineered Cu1.5Te nanocrystals. This surface engineering strategy allows for precise adjustment of Cu/Te ratios and results in a reversible phase transition at around 600 K in Cu1.5-xTe-Cu2Se nanocomposites, as systematically confirmed by in situ high-temperature X-ray diffraction combined with differential scanning calorimetry analysis. The phase transition leads to a conversion from metallic-like to semiconducting-like TE properties. Additionally, a layer of Cu2Se generated around Cu1.5-xTe nanoparticles effectively inhibits Cu1.5-xTe grain growth, minimizing thermal conductivity and decreasing hole concentration. These properties indicate that copper telluride based compounds have a promising thermoelectric potential, translated into a high dimensionless zT of 1.3 at 560 K.

13.
Dalton Trans ; 48(11): 3641-3647, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30758366

RESUMO

We report the thermoelectric performance of p-type nanocrystalline SnSe obtained from the liquid phase sintering of blends of SnSe nanocrystals and Te nanorods. A cycled hot press procedure at a temperature above the Te melting point promoted the formation of crystallographically textured SnSe nanomaterials with relative densities up to 93%. After consolidation, part of this Te was found within the SnSe lattice and part remained as elemental Te between the SnSe grains. The presence of Te during the SnSe consolidation resulted in SnSe nanomaterials with higher electrical conductivities and lower Seebeck coefficients and thermal conductivities. By adjusting the amount of Te, thermoelectric figures of merit (ZT) up to 1.4 at 790 K were measured in the direction of the uniaxial pressure, coinciding with the preferential a crystallographic axis. While this value matches the highest ZT value reported at this temperature for SnSe in the [100] crystal direction, the ZT values of the consolidated SnSe along the bc plane were relatively lower due to moderately low thermal conductivities in this plane.

14.
ACS Nano ; 12(7): 7174-7184, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29966413

RESUMO

In the present work, we demonstrate crystallographically textured n-type Bi2Te3- xSe x nanomaterials with exceptional thermoelectric figures of merit produced by consolidating disk-shaped Bi2Te3- xSe x colloidal nanocrystals (NCs). Crystallographic texture was achieved by hot pressing the asymmetric NCs in the presence of an excess of tellurium. During the hot press, tellurium acted both as lubricant to facilitate the rotation of NCs lying close to normal to the pressure axis and as solvent to dissolve the NCs approximately aligned with the pressing direction, which afterward recrystallize with a preferential orientation. NC-based Bi2Te3- xSe x nanomaterials showed very high electrical conductivities associated with large charge carrier concentrations, n. We hypothesize that such large n resulted from the presence of an excess of tellurium during processing, which introduced a high density of donor TeBi antisites. Additionally, the presence in between grains of traces of elemental Te, a narrow band gap semiconductor with a work function well below Bi2Te3- xSe x, might further contribute to increase n through spillover of electrons, while at the same time blocking phonon propagation and hole transport through the nanomaterial. NC-based Bi2Te3- xSe x nanomaterials were characterized by very low thermal conductivities in the pressing direction, which resulted in ZT values up to 1.31 at 438 K in this direction. This corresponds to a ca. 40% ZT enhancement from commercial ingots. Additionally, high ZT values were extended over wider temperature ranges due to reduced bipolar contribution to the Seebeck coefficient and the thermal conductivity. Average ZT values up to 1.15 over a wide temperature range, 320 to 500 K, were measured, which corresponds to a ca. 50% increase over commercial materials in the same temperature range. Contrary to most previous works, highest ZT values were obtained in the pressing direction, corresponding to the c crystallographic axis, due to the predominance of the thermal conductivity reduction over the electrical conductivity difference when comparing the two crystal directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA