Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Environ Manage ; 234: 65-74, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30616190

RESUMO

A novel, cost-effective and real-time process monitoring and control system was developed to maintain stable operation of waste-to-energy gasification process. It comprised a feedback loop control that utilized the differential temperatures of the oxidation and reduction zones in the gasifier to determine the regional heat-flow (endothermic or exothermic), to assess the availability of oxidizing agent (for instance, air or O2) at the char bed and to calculate the fuel feeding rate. Based on the correlations developed, the air-to-fuel ratio or the equivalence air ratio (ER) for air gasification could be instantaneously adjusted to maintain stable operation of the gasifier. This study demonstrated a simplification of complex reaction dynamics in the gasification process to differential temperature profiling of the gasifier. The monitoring and control system was tested for more than 70 h of continuous operation in a downdraft fixed-bed gasifier with refuse-derived fuel (RDF) prepared from municipal solid wastes (MSW). With the system, fuel feeding rate could be adjusted accurately to stabilize the operating temperature and ER in the gasifier and generate syngas with consistent properties. Significant reductions in the fluctuations of temperature profiles at oxidation and reduction zones (from higher than 100 °C to lower than 50 °C), differential temperatures (from ±200 to ±50 °C) in gasifier and the flow rate (from 16 ±â€¯6.5 to 12 ±â€¯1.8 L/min), composition of main gas components, LHV (from 6.2 ±â€¯3.1 to 5.7 ±â€¯1.6 MJ/Nm3) and tar content (from 8.0 ±â€¯9.7 to 7.5 ±â€¯4.2 g/Nm3) of syngas were demonstrated. The developed gasifier monitoring and control system is adaptable to various types (updraft, downdraft, and fluidized-bed) and scales (lab, pilot, large scale) of gasifiers with different types of fuel.


Assuntos
Resíduos de Alimentos , Resíduos Sólidos , Temperatura Alta , Temperatura
2.
Small ; 11(27): 3319-36, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25808922

RESUMO

Over the past decade, carbon-based 3D architectures have received increasing attention in science and technology due to their fascinating properties, such as a large surface area, macroscopic bulky shape, and interconnected porous structures, enabling them to be one of the most promising materials for water remediation. This review summarizes the recent development in design, preparation, and applications of carbon-based 3D architectures derived from carbon nanotubes, graphene, biomass, or synthetic polymers for water treatment. After a brief introduction of these materials and their synthetic strategies, their applications in water treatment, such as the removal of oils/organics, ions, and dyes, are summarized. Finally, future perspective directions for this promising field are also discussed.

3.
Environ Sci Technol ; 49(4): 2310-8, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25650519

RESUMO

The authors have recently reported the fabrication of superabsorbent cryogels decorated with silver nanoparticles (PSA/AgNP cryogels) that demonstrate rapid water disinfection. This paper provides a systematic elucidation of the bactericidal mechanisms of AgNPs (silver nanoparticles), both generally and in the specific context of cryogels. Direct contact between the PSA/AgNP cryogel interface and the bacterial cells is required to accomplish disinfection. Specifically, the disinfection efficacy is closely correlated to the cell-bound Ag concentration, which constitutes >90% of the Ag released. Cells exposed to PSA/AgNP cryogels show a significant depletion of intracellular adenosine triphosphate (ATP) content and cell-membrane lesions. A positive ROS (reactive oxygen species) scavenging test confirms the involvement of ROS (·O2(-), H2O2, and ·OH) in the bactericidal mechanism. Furthermore, exposed bacterial cells show an enhanced level of thiobarbituric acid reactive substances, indicating the occurrence of cell-membrane peroxidation mediated by ROS. In addition, this study reveals that both Ag(+) and Ag(0) are involved in the bactericidal mechanism of AgNPs via tests conducted using PSA cryogels with bound Ag(+) ions (or PSA/Ag(+) cryogels without reducing Ag(+) to Ag(0)). Significantly, bacterial cells exposed to PSA/Ag(+) cryogels did not show any cell-membrane damage even though the former had a higher cell-bound Ag concentration than that of the PSA/AgNP cryogels, thus indicating the differential action of Ag(+) and Ag(0).


Assuntos
Antibacterianos/química , Criogéis/química , Desinfecção/métodos , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Peróxido de Hidrogênio/química , Espécies Reativas de Oxigênio , Prata/farmacocinética , Água/química , Microbiologia da Água , Purificação da Água/métodos
4.
J Am Chem Soc ; 136(19): 6838-41, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24773367

RESUMO

We report a new strategy to synthesize core-shell metal nanoparticles with an interior, Raman tag-encoded nanogap by taking advantage of nanoparticle-templated self-assembly of amphiphilic block copolymers and localized metal precursor reduction by redox-active polymer brushes. Of particular interest for surface-enhanced Raman scattering (SERS) is that the nanogap size can be tailored flexibly, with the sub-2 nm nanogap leading to the highest SERS enhancement. Our results have further demonstrated that surface functionalization of the nanogapped Au nanoparticles with aptamer targeting ligands allows for specific recognition and ultrasensitive detection of cancer cells. The general applicability of this new synthetic strategy, coupled with recent advances in controlled wet-chemical synthesis of functional nanocrystals, opens new avenues to multifunctional core-shell nanoparticles with integrated optical, electronic, and magnetic properties.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Polímeros/química , Análise Espectral Raman/métodos , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Humanos , Nanopartículas Metálicas/ultraestrutura , Neoplasias/diagnóstico , Oxirredução , Propriedades de Superfície
5.
Environ Sci Technol ; 47(16): 9363-71, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23927762

RESUMO

This paper reports the preparation of poly(sodium acrylate) (PSA) cryogels decorated with silver nanoparticles (AgNPs) for point-of-use (POU) water disinfection. The PSA/Ag cryogels combine the high porosity, excellent mechanical and water absorption properties of cryogels, and uniform dispersion of fine AgNPs on the cryogel pore surface for rapid disinfection with minimal Ag release (<100 µg L(-1)). They were used in a process that employed their ability to absorb water, which subsequently could be released via application of mild pressure. Their antibacterial performance was evaluated based on the disinfection efficacies of E. coli and B. subtilis . The PSA/Ag cryogels had excellent disinfection efficacies showing close to a 3 log reduction of viable bacteria after a brief 15 s contact time. They were highly reusable as there was no significant difference in the disinfection efficacies over five cycles of operation. The biocidal action of the PSA/Ag cryogels is believed to be dominated by surface-controlled mechanisms that are dependent on direct contact of the interface of PSA/Ag cryogels with the bacterial cells. The PSA/Ag cryogels are thought to offer a simpler approach for drinking water disinfection in disaster relief applications.


Assuntos
Criogéis , Desinfecção , Nanopartículas Metálicas , Prata , Purificação da Água
6.
Chemosphere ; 329: 138551, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37003437

RESUMO

We have compared the elimination of 5-bromosalicylic acid (BSA) in the systems of goethite (α-FeOOH)/H2O2 and lepidocrocite (γ-FeOOH)/H2O2. The results demonstrated that BSA (10 mg L-1) could be successfully adsorbed on α- and γ-FeOOH (0.5 g L-1) and then effectively degraded after the addition of H2O2 (14.7 mM). BSA adsorption on both α- and γ-FeOOH followed pseudo-second order adsorption kinetic models, with γ-FeOOH having greater adsorption ability than α-FeOOH. In the α-FeOOH/H2O2 system, BSA degradation was well fitted with the pseudo-second order kinetics, whereas the oxidation in γ-FeOOH/H2O2 system had a two-stage pseudo-first order kinetics. Electron paramagnetic resonance (EPR) results for these two systems revealed the presence of •OH and •OOH, and further tests with radical captures demonstrated their dominance in degrading BSA. Based on the electronic structure analysis, electrons were more easily transferred from the H2O2 molecule to the Fe atoms of α-FeOOH, explaining the density functional theory (DFT) calculation results, which showed that α-FeOOH performed better in catalyzing the decomposition of H2O2. However, the free radicals are more likely to desorb from γ-FeOOH, which made the γ-FeOOH/H2O2 system more efficient in degrading BSA.


Assuntos
Peróxido de Hidrogênio , Compostos de Ferro , Peróxido de Hidrogênio/química , Teoria da Densidade Funcional , Compostos de Ferro/química
7.
Chemosphere ; 291(Pt 2): 132831, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34767850

RESUMO

Thermochemical conversion of plastic wastes into carbon nanotubes (CNTs) and hydrogen is a promising management option to eliminate their hazardous effect. The yields and morphologies of CNTs strongly depend on the catalyst design and reaction conditions. To boost the efficiency, tuning of bimetallic nanoparticles as catalyst is an effective approach. For that reason, A-site-deficient perovskite La0·8Ni1-xCoxO3-δ (LN1-xCx, x = 0.15, 0.5, 0.85) was developed and used as a catalyst precursor to achieve in situ formation of bimetallic Ni-Co nanoparticles. At an optimized Ni-to-Co ratio, the LN0.5C0.5 exhibited the highest yields of multi-walled CNTs, namely 840 and 853 mg/gcatalyst from high density polyethylene and polypropylene, respectively. This could be attributed to the higher catalytic capability of LN0.5C0.5 catalyst for the decomposition of hydrocarbons into hydrogen and carbon. In both cases, multi-walled CNTs had regular shapes when the reaction temperature was 700 °C. At higher reaction temperatures, the morphological changes of carbon products were observed from multi-walled CNTs to carbon nano-onions. The Raman spectra showed that compared with the commercial multi-walled CNTs, the as-prepared multi-walled CNTs had a lower degree of defects.


Assuntos
Nanotubos de Carbono , Plásticos , Compostos de Cálcio , Hidrogênio , Óxidos , Temperatura , Titânio
8.
Chemosphere ; 286(Pt 3): 131869, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34418655

RESUMO

Improving the efficiencies of organic compound degradations by catalytic materials is a challenging materials research field. In our research, we successfully synthesized cobalt-based polyoxometalates (CoV-POMs) via a simple crystallization-driven self-assembly method. The incorporation of the newly synthesized CoV-POMs into peroxymonosulphate (PMS), forming a mixture, greatly enhancing the catalytic activation for a complete degradation of dye solution. The positive synergic effect between CoV-POMs and PMS was substantiated by a relatively meager degradation of less than 10% in the system without CoV-POMs, in which CoV-POMs played a vital role to activate PMS towards free radicals generation for dye degradation. Methylene blue (MB) and rhodamine B (RB) dyes were completely decolorized under 60 min with the presence of 40 mg/L CoV-POMs and 150 mg/L PMS. The CoV-POMs/PMS system was pH dependance with a lower dye degradation efficiency at elevated pH. The effect of pH was more prominent in RB dye, in which the degradation efficiency dropped drastically from 93.3% to 41.12% with the increase in the solution pH from 7 to 11. The quenching tests suggested that sulfate radicals were the dominant active species involving in the dye degradation reaction. Besides MB and RB dyes, CoV-POMs/PMS system also showed significant activity towards the degradation of phenol red (PR) and methyl orange (MO) dyes. In the biological test, CoV-POMs exhibited non-toxic behavior towards normal cells that reduced safety concern for the large-scale wastewater treatment application. In addition, the testing divulged the anticancer property of CoV-POMs with more than 35 % of A549 lung adenocarcinoma and MDA-MB-231 breast adenocarcinoma were killed with 250 mg/L CoV-POMs. The selective lethality of CoV-POMs towards cancer cells was found to be caused by different extents of cellular apoptosis. In overall, the synthesized bifunctional CoV-POMs manifested superior activities in the examined applications, specifically dye degradation and anticancer.


Assuntos
Corantes , Compostos de Tungstênio , Catálise , Cobalto
9.
J Hazard Mater ; 426: 128077, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953256

RESUMO

Catalytic activation of peroxymonosulfate (PMS) and peroxydisulfate (PDS) (or collectively known as persulfate, PS) using carbocatalyst is increasingly gaining attention as a promising technology for sustainable recalcitrant pollutant removal in water. Single heteroatom doping using either N, S, B or P is widely used to enhance the performance of the carbocatalyst for PS activation. However, the performance enhancement from single heteroatom doping is limited by the type of heteroatom used. To further enhance the performance of the carbocatalyst beyond the limit of single heteroatom doping, multi-heteroatom doping can be conducted. This review aims to provide a state-of-the-art overview on the development of multi-heteroatom-doped carbocatalyst for PS activation. The potential synergistic and antagonistic interactions of various heteroatoms including N and B, N and S, N and P, and N and halogen for PS activation are evaluated. Thereafter, the preparation strategies to develop multi-heteroatom-doped carbocatalyst including one-step and multi-step preparation approaches along with the characterization techniques are discussed. Evidence and summary of the performance of multi-heteroatom-doped carbocatalyst for various recalcitrant pollutants removal via PS activation are also provided. Finally, the prospects of employing multi-heteroatom-doped carbocatalyst including the need to study the correlation between different heteroatom combination, surface moiety type, and amount of dopant with the PS activation mechanism, identifying the best heteroatom combination, improving the durability of the carbocatalyst, evaluating the feasibility for full-scale application, developing low-cost multi-heteroatom-doped carbocatalyst, and assessing the environmental impact are also briefly discussed.


Assuntos
Poluentes Ambientais , Purificação da Água , Catálise , Peróxidos
10.
Chemosphere ; 297: 134148, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35240158

RESUMO

Fe2O3-Al2O3 catalysts applied for conversion of polyolefin plastic waste into multi-walled carbon nanotubes (MWCNTs) and H2 are typically produced by impregnation, co-precipitation or sol-gel synthesis at atmospheric pressure and temperatures below 100 °C. This study utilized hydrothermal conditions and established the role of precipitating agents (urea, N-methylurea and N,N'-dimethylurea) on properties and catalytic activity of Fe2O3-Al2O3 catalysts (Fe-u, Fe-mu and Fe-dmu, respectively). The precipitating agent played a key role in tailoring the properties, such as crystallization degree, surface area and reducibility. The precipitating agents influenced the yield and outer diameters of MWCNTs but did not affect graphitization degree. Among the synthesized catalysts, Fe-u had the largest surface area and preferential formation of the highly reducible α-Fe2O3 crystalline phase. As a result, Fe-u had the highest activity during conversion of pyrolysis gas from low-density polyethylene (LDPE) into MWCNTs, yielding 0.91 g·g-1-catalyst MWCNTs at 800 °C as compared to 0.42 and 0.14 g·g-1-catalyst using Fe-dmu and Fe-mu, respectively. Fe-dmu favored the growth of MWCNTs with smaller outer diameters. Fe-u demonstrated high efficiency during operation using a continuous flow of pyrolysis gas from a mixture of polyolefins (70 wt% polypropylene, 6 wt% LDPE and 24 wt% high density polyethylene) producing 4.28 g·g-1-catalyst MWCNTs at 3.2% plastic conversion efficiency and a stable H2 flow for 155 min (25-32 vol%). The obtained data demonstrate that the selection of an appropriate precipitating agent for hydrothermal synthesis allows for the production of highly active Fe2O3-Al2O3 catalysts for the upcycling of polyolefin plastic waste into MWCNTs and H2.

11.
ACS Appl Mater Interfaces ; 14(16): 18409-18419, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35426679

RESUMO

Porous boron nitride (BN) nanorods, which were synthesized via a one-stage pyrolysis, exhibited excellent catalytic performance for organics' degradation via peroxymonosulfate (PMS) activation. The origin of the unexpected catalytic function of porous BN nanorods was proposed, in which non-radical oxidation driven by the defects on porous BN dominated the sulfamethoxazole degradation via the generation of singlet oxygen (1O2). The adsorption energy between PMS and BN was calculated via density functional theory (DFT), and the PMS activation kinetics were further investigated using an electrochemical methodology. The evolution of 1O2 was verified by electron spin resonance (ESR) and chemical scavenging experiments. The observed non-radical oxidation presented a high robustness in different water matrices, combined with a series of much less toxic intermediates. The used BN was easily regenerated by heating in air, in which the B-O bond was fully recovered. These findings provide new insights for BN as a non-metal catalyst for organics' degradation via PMS activation, in both theoretical and practical prospects.

12.
J Hazard Mater ; 403: 123642, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32818833

RESUMO

The variation of metal-support interaction (MSI) plays a key role in the synthesis of carbon nanotubes (CNTs) based on chemical vapor deposition process. This work concentrates on weakening the interaction of Fe-La in an A-site-deficient perovskite (La0.8FeO3-δ) via Ni partial substitution. After reductive treatment, the catalysts were employed for thermocatalytic synthesis of CNTs from plastics. Following the structural, morphological and chemical changes, the catalytic activities of the reductive La0.8NixFe1-xO3-δ (H-LNxF1-x, x = 0, 0.15, 0.5, 0.85) were correlated with the degree of MSI. Compared with H-LF sample, the H-LN0.15F0.85 sample exhibited the highest catalytic activity, which was attributable to the highest surface coverage of metals as well as the synergistic effect of Fe and Ni species. The yield of CNTs produced from low density polyethylene was 1.44 g/gcatalyst over the H-LN0.15F0.85 sample, which was much higher than that over H-LF sample (0.38 g/gcatalyst).

13.
ACS Nano ; 15(4): 6977-6986, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33754693

RESUMO

Mixtures of immiscible liquids are commonly found in the scenarios of environmental protection and many industrial applications. Compared to widely explored water-oil mixtures, small differences in the surface energy of organic liquids, especially for those in multiphase mixtures, make their separation a formidable challenge. Here, a family of versatile coatings based on the reactions between plant polyphenols and 3-aminopropyl triethoxysilane is introduced to regulate the wetting behavior of substrates by forming stable liquid-infused interfaces. The key finding is that when a coated substrate is prewetted with a liquid forming a stable liquid-infused interface, it becomes repellent to any other immiscible liquids. This phenomenon is independent of the surface energy of the initial wetting liquid. This exclusive wetting behavior can lead to distinctive repellency toward almost any liquid by the infusion of an immiscible liquid, even if the difference of surface energy and dielectric constant of a liquid pair is as small as 2.0 mJ m-2 and 1.8, respectively, resulting in universal and switchable omni-repellency. Of particular importance is that the as-prepared coating makes possible the on-demand separation of multiphase liquid mixtures by both continuous membrane filtration and static absorption, presenting a green and cost-effective approach to addressing this major environmental and industrial challenge.

14.
Water Sci Technol ; 62(3): 491-500, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20705995

RESUMO

Results from a direct recharge experiment conducted in the field to investigate DOC and UVA(254) attenuation rates during the direct injection of UF treated wastewater into a artificial coastal sandfill are presented in this paper. Approximately 500 m(3) of ultra-filtered wastewater was injected into the saturated zone, over a period of 9 days. The movement of the plume was tracked over 80 days, during which time samples were obtained from multilevel samplers installed in transects across the drift axis of the plume. An analysis of fluorescein in the samples obtained during the drift of the UF plume showed that DOC and UVA were attenuated beyond rates predicted by conservative mixing, by up to a maximum of 45%. A degradation coefficient of 0.0175 day(-1) was found to be applicable for DOC degradation. After a drift period of 80 days, DOC and UVA reduced to approximately 4.5 mg/l and 0.100 cm(-1), respectively, from initial values of 8.06 mg/l and 0.199 cm(-1).


Assuntos
Carbono/química , Solo/análise , Raios Ultravioleta , Poluentes Químicos da Água/química , Água/química , Ecossistema , Dióxido de Silício , Fatores de Tempo , Purificação da Água
15.
ACS Appl Mater Interfaces ; 12(31): 35563-35571, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635718

RESUMO

Membrane filtration is a promising technology for the separation of organic immiscible liquids. Surface topography has a direct impact on the wettability of membranes, and it remains largely unexplored. Here, we introduce on-demand liquid separation by coating porous graphene/metal-organic framework (MOF) composites with tunable wettability on porous substrates. Our results have shown that polydopamine (PDA) coating mediates the controlled growth of MOF nanostructures and subsequent fluorination on the porous graphene framework. Surface topography of the graphene frameworks strongly depends on the loading content of MOF nanostructures. The concurrent control of surface coverage of MOF and surface chemistry allows tailoring of the trapped air fraction underneath the porous graphene frameworks in the range of 0.97 to 0.8. As a result, the surface energy of the graphene/MOF coatings can be programmed to afford the change in surface properties from superamphiphobicity to lyophobicity and the selective penetration of low-surface-energy (SE) liquids and the interception of high-SE liquids were achieved. The tailored wettability of graphene/MOF coatings allows for the separation of liquid mixtures of different ranges of SE, making it a general strategy for complex liquid treatment and chemical purification.

16.
Chemosphere ; 245: 125407, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31862551

RESUMO

Catalytic activation of peroxymonosulfate (PMS) to generate radicals has received considerable and increasing attention in the environmental catalysis for treatment of recalcitrant pollutants. In the current study, a series of highly porous, cobalt-loaded activated carbon nanofibers (Co/CNFs) were prepared by one-pot electrospinning followed by thermal treatment. Observations showed that the limited addition of Co (≤8%) had no obvious effect on the morphology of the resulted CNFs, but it did affect the surface area and porosity of the CNFs as well as the carbon graphitic process during the carbonization. The applicability of this confined nanoreactor used in sulfate-radical based advanced oxidation processes (SR-AOPs) was systematically investigated. The effect of pH on the radical generation and organics removal was examined. The oxygen species on the CNFs played an important role in the activation of PMS. The carbon layer encapsulated on the Co crystal surface inhibited the Co leaching during the reaction and increased the catalytic efficiency due to the enhanced interfacial charge transfer. Meanwhile, the carbon layer could synchronously function as the adsorptive active sites during the degradation of organics. Results showed that the Co/CNFs possessed the highest catalytic efficiency under neutral pH, corresponding to the sulfate radical generation. The Co leaching and XPS results showed that the Co served as the main active site in PMS activation.


Assuntos
Cobalto/química , Oxigênio/química , Catálise , Carvão Vegetal , Grafite , Nanofibras , Oxirredução , Peróxidos , Sulfatos
17.
Water Sci Technol ; 60(5): 1273-81, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19717915

RESUMO

Results of experiments investigating geochemical changes during artificial recharge of treated wastewater at a coastal sandfill, reclaimed with sand dredged from the seabed, are reported in this paper. Laboratory batch experiments were conducted using secondary effluent (SE) and SE treated with an additional ultrafiltration process (UF), and wastewater treated by reverse osmosis (RO) process, mixed with surface sand obtained from the sandfill. Experiments with RO showed a net increase of 0.41 meq/L, 0.12 meq/L and 0.31 meq/L for Ca(2 + ), Mg(2 + ) and HCO(3) (-), respectively. UF and SE also exhibited net increase in Ca(2 + ), Mg(2 + ) and HCO(3) (-) indicating carbonate mineral dissolution. All three waters were found to be over-saturated with respect to calcite. Carbonate dissolution reactions were observed in the field experiments. However, the presence of imported clays from the borrow source gave rise to ion exchange reactions where Na(+) attached to the clay particles were exchanged for Ca(2 + ) and Mg(2 + ) inducing mineral dissolution, driven by sub-saturation conditions. This resulted in an increase in pH with maximum values in excess of 9.0. It was also found that the sodium adsorption ratio remained high (>10) even after the groundwater had been diluted sufficiently to freshwater levels (ionic strength, I <0.015) indicating a potential for the dispersion of clay particles. This could have a deleterious consequence on porosity and hydraulic conductivity.


Assuntos
Geografia , Dióxido de Silício , Eliminação de Resíduos Líquidos/métodos , Silicatos de Alumínio , Argila , Oceanos e Mares , Porosidade
18.
Environ Sci Pollut Res Int ; 26(2): 1026-1035, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28130722

RESUMO

In this study, a Bi2Fe4O9 catalyst with nanoplate morphology was fabricated using a facile hydrothermal method. It was used as a catalyst to activate peroxymonosulfate (PMS) for aqueous sulfamethoxazole (SMX) removal. A comprehensive performance evaluation of the Bi2Fe4O9/PMS system was conducted by investigating the effects of pH, PMS dosage, catalyst loading, SMX concentration, temperature, and halides (Cl- and Br-) on the degradation of SMX. The Bi2Fe4O9/PMS system demonstrated a remarkable catalytic activity with >95% SMX removal within 30 min (conditions: pH 3.8, [Bi2Fe4O9] = 0.1 g L-1, [SMX]:[PMS] mol ratio =1:20). It was found that both Cl- and Br- can lead to the formation of PMS-induced reactive halide species (i.e. HClO, HBrO, and Br2) which can also react with SMX forming halogenated SMX byproducts. Based on the detected degradation byproducts, the major SMX degradation pathway in the Bi2Fe4O9/PMS system is proposed. The SMX degradation by Bi2Fe4O9/PMS system in the wastewater secondary effluent (SE) was also investigated. The results showed that SMX degradation rate in the SE was relatively slower than in the deionized water due to (i) reactive radical scavenging by water matrix species found in SE (e.g.: dissolved organic matters (DOCs), etc.), and (ii) partial deactivation of the catalyst by DOCs. Nevertheless, the selectivity of the SO4•- towards SMX degradation was evidenced from the rapid SMX degradation despite the high background DOCs in the SE. At least four times the dosage of PMS is required for SMX degradation in the SE to achieve a similar SMX removal efficiency to that of the deionized water matrix.


Assuntos
Peróxidos/química , Sulfametoxazol/química , Eliminação de Resíduos Líquidos/métodos , Catálise , Concentração de Íons de Hidrogênio , Temperatura , Poluentes Químicos da Água/química
19.
Chemosphere ; 235: 719-725, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31279122

RESUMO

UV direct photolysis has been used as a promising process to remove halogenated disinfection byproducts (DBPs) generated in water. In this study, experimental studies and modeling approaches were applied to investigate the UV direct photolysis rate constants for 40 kinds of halogenated DBPs. The fluence-based pseudo-first-order rate constants for the removal of halogenated DBPs under UV photolysis spanned more than 2 orders of magnitude, with a range of (0.23-29.84) × 10-4 cm2 mJ-1. DBPs with higher number of halogenated substituents featured higher photolysis rate constants. The degradation efficiencies of DBPs were also affected by the species of halogen substituents, which followed the trend of iodo- > bromo- > chloro- DBPs. A quantitative structure-activity relationship (QSAR) model was established on the basis of the observed degradation rate constant values, which contained a quantum-chemical descriptor (ELUMO-EHOMO) and a molecular descriptor (Eta_C). The calculated parameters of the developed model indicated its good robustness and high reliability. The developed QSAR model can predict the degradation rate constants for DBPs within factors of 1/3 to 3. The model was validated using application domain and visualized in a Williams plot. The selected descriptors for QSAR model can explain the reaction mechanism for UV direct photolysis.


Assuntos
Desinfetantes/química , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água/química , Desinfecção , Halogenação , Halogênios , Fotólise , Reprodutibilidade dos Testes , Raios Ultravioleta , Água/química , Poluentes Químicos da Água/análise
20.
Waste Manag ; 83: 131-141, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30514459

RESUMO

A comprehensive study was conducted to evaluate the fuel properties of the char produced from pyrolysis of municipal sludge (MS) and industrial sludge (IS) at different pyrolysis temperatures (500-700 °C). A detailed characterisation of the char was performed to investigate the impact of the decomposition and the accumulation of organic and inorganic compounds during pyrolysis on the fuel properties of the derived char. Increase in pyrolysis temperature increased the fuel ratios especially in the MS-derived char. On the other hand, ash accumulation resulted in decreased higher heating values (HHVs). Dehydration and decarboxylation were the main reactions, which caused the decomposition of the organic compounds in raw sludge during pyrolysis. Thermogravimetric analysis results showed that high temperature pyrolysis could improve the thermal stability of the derived char. The accumulation of catalytic inorganic compounds improved the combustion reactivity of both the IS and MS-derived char. The MS-derived char showed higher slagging and ash fouling indices compared to the IS-derived char despite the lower ash content. However, slagging and ash fouling indices of the char were comparable to that of raw sludge samples. The results indicate that the accumulation and physicochemical transformations of heavy metals during pyrolysis process would not be significantly affected during combustion of the char. For practical application in combustion, the MS-derived char has a greater potential due to considerable HHVs, improved thermal stability, efficient combustion characteristics, lower heavy metals leaching and comparable ash related issues.


Assuntos
Metais Pesados , Esgotos , Temperatura Alta , Pirólise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA