RESUMO
Neutrophils rapidly infiltrate sites of infection and possess several microbicidal strategies, such as neutrophil extracellular traps release and phagocytosis. Enhanced neutrophil infiltration is associated with higher susceptibility to Leishmania infection, but neutrophil effector response contribution to this phenotype is uncertain. Here, we show that neutrophils from susceptible BALB/c mice (B/c) produce more NETs in response to Leishmania major than those from resistant C57BL/6 mice (B6), which are more phagocytic. The absence of neutrophil elastase contributes to phagocytosis regulation. Microarray analysis shows enrichment of genes involved in NET formation (mpo, pi3kcg, il1b) in B/c, while B6 shows upregulation of genes involved in phagocytosis and cell death (Arhgap12, casp9, mlkl, FasL). scRNA-seq in L. major-infected B6 showed heterogeneity in the pool of intralesional neutrophils, and we identified the N1 subset as the putative subpopulation involved with phagocytosis. In vivo, imaging validates NET formation in infected B/c ears where NETing neutrophils were mainly uninfected cells. NET digestion in vivo augmented parasite lymphatic drainage. Hence, a balance between NET formation and phagocytosis in neutrophils may contribute to the divergent phenotype observed in these mice.
Assuntos
Leishmania major , Leishmaniose Cutânea , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutrófilos , Fagocitose , Animais , Leishmania major/imunologia , Neutrófilos/imunologia , Camundongos , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Armadilhas Extracelulares/imunologia , Suscetibilidade a Doenças , FemininoRESUMO
Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.
Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Camundongos , Humanos , Receptor 4 Toll-Like/genética , Receptor PAR-2/genética , Doença de Chagas/genética , Doença de Chagas/parasitologia , Antivirais/farmacologia , Inibidores de Serina Proteinase/farmacologia , Inflamação , Serina , Serina Endopeptidases/genéticaRESUMO
The protozoan parasite Leishmania (L.) amazonensis infects and replicates inside host macrophages due to subversion of the innate host cell response. In the present study, we demonstrate that TLR3 is required for the intracellular growth of L. (L.) amazonensis. We observed restricted intracellular infection of TLR3-/- mouse macrophages, reduced levels of IFN1ß and IL-10, and increased levels of IL-12 upon L. (L.) amazonensis infection, compared with their wild-type counterparts. Accordingly, in vivo infection of TLR3-/- mice with L. (L.) amazonensis displayed a significant reduction in lesion size. Leishmania (L.) amazonensis infection induced TLR3 proteolytic cleavage, which is a process required for TLR3 signaling. The chemical inhibition of TLR3 cleavage or infection by CPB-deficient mutant L. (L.) mexicana resulted in reduced parasite load and restricted the expression of IFN1ß and IL-10. Furthermore, we show that the dsRNA sensor molecule PKR (dsRNA-activated protein kinase) cooperates with TLR3 signaling to potentiate the expression of IL-10 and IFN1ß and parasite survival. Altogether, our results show that TLR3 signaling is engaged during L. (L.) amazonensis infection and this component of innate immunity modulates the host cell response.
Assuntos
Leishmania mexicana , Leishmaniose , Parasitos , Receptor 3 Toll-Like , Animais , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Leishmania mexicana/metabolismo , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Camundongos , Parasitos/metabolismo , Proteínas Quinases/metabolismo , Receptor 3 Toll-Like/metabolismoRESUMO
Macrophages play critical roles in inflammation and defense against pathogens, as well as in the return to tissue homeostasis. Macrophage subpopulations displaying antagonistic phenotypes are generally classified as proinflammatory M1, implicated in antipathogen and antitumoral activities, or as anti-inflammatory M2, associated with tissue repair. Granulocytic and monocytic myeloid-derived suppressor cells recruited from the bone marrow to tissues and phagocytosis of apoptotic neutrophils can attenuate macrophage microbicidal activity. Here, we showed that bone marrow neutrophils, but not thioglycollate-recruited neutrophils, directly suppress the responses of macrophages that were previously committed to an inflammatory phenotype. Cocultures of inflammatory macrophages with bone marrow CD11b+Ly6Ghi granulocytes led to reduced release of IL-1ß, TNF-α, and IL-6 by macrophages after lipopolysaccharide stimulation. The suppressive activity was unrelated to granulocyte apoptosis or to secreted factors and required cell-to-cell contact. The suppressive effect was paralleled by reduction in the nuclear levels of the NF-κB p65 subunit, but not of the p50 subunit. Furthermore, bone marrow granulocytes decreased the phagocytic activity of macrophages and their capacity to kill intracellular Escherichia coli. Taken together, these results show that bone marrow granulocytes can function as suppressors of the proinflammatory activity and microbial-killing responses of macrophages.
Assuntos
Medula Óssea , Macrófagos , Granulócitos , Humanos , Inflamação , FagocitoseRESUMO
The protozoan Trypanosoma brucei rhodesiense causes Human African Trypanosomiasis, also known as sleeping sickness, and penetrates the central nervous system, leading to meningoencephalitis. The Cathepsin L-like cysteine peptidase of T. b. rhodesiense has been implicated in parasite penetration of the blood-brain barrier and its activity is modulated by the chagasin-family endogenous inhibitor of cysteine peptidases (ICP). To investigate the role of ICP in T. b. rhodesiense bloodstream form, ICP-null (Δicp) mutants were generated, and lines re-expressing ICP (Δicp:ICP). Lysates of Δicp displayed increased E-64-sensitive cysteine peptidase activity and the mutant parasites traversed human brain microvascular endothelial cell (HBMEC) monolayers in vitro more efficiently. Δicp induced E-selectin in HBMECs, leading to the adherence of higher numbers of human neutrophils. In C57BL/6 mice, no Δicp parasites could be detected in the blood after 6 days, while mice infected with wild-type (WT) or Δicp:ICP displayed high parasitemia, peaking at day 12. In mice infected with Δicp, there was increased recruitment of monocytes to the site of inoculation and higher levels of IFN-γ in the spleen. At day 14, mice infected with Δicp exhibited higher preservation of the CD4+, CD8+, and CD19+ populations in the spleen, accompanied by sustained high IFN-γ, while NK1.1+ populations receded nearly to the levels of uninfected controls. We propose that ICP helps to downregulate inflammatory responses that contribute to the control of infection.
Assuntos
Proteínas de Protozoários , Trypanosoma brucei rhodesiense , Tripanossomíase Africana , Animais , Camundongos , Camundongos Endogâmicos C57BL , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/parasitologia , Virulência , Proteínas de Protozoários/metabolismoRESUMO
Visceral leishmaniasis is a deadly illness caused by Leishmania donovani that provokes liver and spleen inflammation and tissue destruction. In cutaneous leishmaniasis, the protein of L. major, named inhibitor of serine peptidases (ISP) 2, inactivates neutrophil elastase (NE) present at the macrophage surface, resulting in blockade of TLR4 activation, prevention of TNF-α and IFN-ß production, and parasite survival. We report poor intracellular growth of L. donovani in macrophages from knockout mice for NE (ela-/-), TLR4, or TLR2. NE and TLR4 colocalized with the parasite in the parasitophorous vacuole. Parasite load in the liver and spleen of ela-/- mice were reduced and accompanied by increased NO and decreased TGF-ß production. Expression of ISP2 was not detected in L. donovani, and a transgenic line constitutively expressing ISP2, displayed poor intracellular growth in macrophages and decreased burden in mice. Infected ela-/- macrophages displayed significantly lower IFN-ß mRNA than background mice macrophages, and the intracellular growth was fully restored by exogenous IFN-ß. We propose that L. donovani utilizes the host NE-TLR machinery to induce IFN-ß necessary for parasite survival and growth during early infection. Low or absent expression of parasite ISP2 in L. donovani is necessary to preserve the activation of the NE-TLR pathway.-Dias, B. T., Dias-Teixeira, K. L., Godinho, J. P., Faria, M. S., Calegari-Silva, T., Mukhtar, M. M., Lopes, U. G., Mottram, J. C., Lima, A. P. C. A. Neutrophil elastase promotes Leishmania donovani infection via interferon-ß.
Assuntos
Interferon beta/metabolismo , Leishmania donovani/patogenicidade , Leishmaniose Visceral/etiologia , Elastase de Leucócito/metabolismo , Animais , Animais Geneticamente Modificados , Leishmania donovani/genética , Leishmania donovani/fisiologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Elastase de Leucócito/deficiência , Elastase de Leucócito/genética , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismoRESUMO
Alzheimer's disease (AD) is a disabling and highly prevalent neurodegenerative condition, for which there are no effective therapies. Soluble oligomers of the amyloid-ß peptide (AßOs) are thought to be proximal neurotoxins involved in early neuronal oxidative stress and synapse damage, ultimately leading to neurodegeneration and memory impairment in AD. The aim of the current study was to evaluate the neuroprotective potential of mesenchymal stem cells (MSCs) against the deleterious impact of AßOs on hippocampal neurons. To this end, we established transwell cocultures of rat hippocampal neurons and MSCs. We show that MSCs and MSC-derived extracellular vesicles protect neurons against AßO-induced oxidative stress and synapse damage, revealed by loss of pre- and postsynaptic markers. Protection by MSCs entails three complementary mechanisms: 1) internalization and degradation of AßOs; 2) release of extracellular vesicles containing active catalase; and 3) selective secretion of interleukin-6, interleukin-10, and vascular endothelial growth factor to the medium. Results support the notion that MSCs may represent a promising alternative for cell-based therapies in AD.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/citologia , Células-Tronco Mesenquimais/citologia , Neurônios/metabolismo , Estresse Oxidativo , Sinapses/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Animais , Células Cultivadas , Técnicas de Cocultura , Vesículas Extracelulares/genética , Hipocampo/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Leishmania major is the causative agent of the neglected tropical disease, cutaneous leishmaniasis. In the mouse, protective immunity to Leishmania is associated with inflammatory responses. Here, we assess the dynamics of the inflammatory responses at the lesion site during experimental long-term, low-dose intradermal infection of the ear, employing noninvasive imaging and genetically modified L. major. Significant infiltrates of neutrophils and monocytes occurred at 1-4 d and 2-4 wk, whereas dermal macrophage and dendritic cell (DC) numbers were only slightly elevated in the first days. Quantitative whole-body bioluminescence imaging of myeloperoxidase activity and the quantification of parasite loads indicated that the Leishmania virulence factor, inhibitor of serine peptidase 2 (ISP2), is required to modulate phagocyte activation and is important for parasite survival at the infection site. ISP2 played a role in the control of monocyte, monocyte-derived macrophage, and monocyte-derived DC (moDC) influx, and was required to reduce iNOS expression in monocytes, monocyte-derived cells, and dermal DCs; the expression of CD80 in moDCs; and levels of IFN-γ in situ. Our findings indicate that the increased survival of L. major in the dermis during acute infection is associated with the down-regulation of inflammatory monocytes and monocyte-derived cells via ISP2.-Goundry, A., Romano, A., Lima, A. P. C. A., Mottram, J. C., Myburgh, E. Inhibitor of serine peptidase 2 enhances Leishmania major survival in the skin through control of monocytes and monocyte-derived cells.
Assuntos
Células Dendríticas/imunologia , Leishmania major/crescimento & desenvolvimento , Leishmaniose Cutânea/parasitologia , Monócitos/imunologia , Serina Endopeptidases/metabolismo , Pele/parasitologia , Fatores de Virulência/metabolismo , Animais , Células Cultivadas , Feminino , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologiaRESUMO
In cutaneous leishmaniasis, Leishmania amazonensis activates macrophage double-stranded, RNA-activated protein kinase R (PKR) to promote parasite growth. In our study, Leishmania major grew normally in RAW cells, RAW-expressing dominant-negative PKR (PKR-DN) cells, and macrophages of PKR-knockout mice, revealing that PKR is dispensable for L. major growth in macrophages. PKR activation in infected macrophages with poly I:C resulted in parasite death. Fifty percent of L. major-knockout lines for the ecotin-like serine peptidase inhibitor (ISP2; Δisp2/isp3), an inhibitor of neutrophil elastase (NE), died in RAW cells or macrophages from 129Sv mice, as a result of PKR activation. Inhibition of PKR or NE or neutralization of Toll-like receptor 4 or 2(TLR4 or TLR2) prevented the death of Δisp2/isp3. Δisp2/isp3 grew normally in RAW-PKR-DN cells or macrophages from 129Sv pkr(-/-), tlr2(-/-), trif(-/-), and myd88(-/-) mice, associating NE activity, PKR, and TLR responses with parasite death. Δisp2/isp3 increased the expression of mRNA for TNF-α by 2-fold and of interferon ß (IFNß) in a PKR-dependent manner. Antibodies to TNF-α reversed the 95% killing by Δisp2/isp3, whereas they grew normally in macrophages from IFN receptor-knockout mice. We propose that ISP2 prevents the activation of PKR via an NE-TLR4-TLR2 axis to control innate responses that contribute to the killing of L. major.-Faria, M. S., Calegari-Silva, T. C., de Carvalho Vivarini, A., Mottram, J. C., Lopes, U. G., Lima, A. P. C. A. Role of protein kinase R in the killing of Leishmania major by macrophages in response to neutrophil elastase and TLR4 via TNFα and IFNß.
Assuntos
Interferon beta/imunologia , Leishmania major/imunologia , Elastase de Leucócito/imunologia , Macrófagos/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia , eIF-2 Quinase/imunologia , Animais , Células Cultivadas , Leishmaniose Cutânea/imunologia , Camundongos , Camundongos KnockoutRESUMO
The drug discovery pipeline for leishmaniasis and trypanosomiasis has been filling with novel chemical entities with known mechanisms of action. González et al. and Braillard et al. report a cytochrome bc1 complex inhibitor as another promising preclinical candidate for visceral leishmaniasis (VL) and, in combination with benznidazole, for chronic Chagas' disease (CCD).
Assuntos
Doença de Chagas , Leishmaniose Visceral , Leishmaniose , Trypanosoma cruzi , Tripanossomíase , Humanos , Doença de Chagas/tratamento farmacológico , Leishmaniose/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológicoRESUMO
The cysteine protease brucipain is an important drug target in the protozoan Trypanosoma brucei, the causative agent of both Human African trypanosomiasis and Animal African trypanosomiasis. Brucipain is closely related to mammalian cathepsin L and currently used as a framework for the development of inhibitors that display anti-parasitic activity. We show that recombinant brucipain lacking the C-terminal extension undergoes inhibition by the substrate benzyloxycarbonyl-FR-7-amino-4-methylcoumarin at concentrations above the K(m), but not by benzyloxycarbonyl-VLR-7-amino-4-methylcoumarin. The allosteric modulation exerted by the substrate is controlled by temperature, being apparent at 25°C but concealed at 37°C. The behavior of the enzyme in vitro can be explained by discrete conformational changes caused by the shifts in temperature that render it less susceptible to substrate inhibition. Enzyme inhibition by the di-peptydyl substrate impaired the degradation of human fibrinogen at 25°C, but not at 37°C. We also found that heparan sulfate acts as a natural allosteric modulator of the enzyme through interactions that prevent substrate inhibition. We propose that brucipain shifts between an active and an inactive form as a result of temperature-dependent allosteric regulation.
Assuntos
Catepsina L/química , Cumarínicos/química , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Heparitina Sulfato/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia , Regulação Alostérica , Animais , Catepsina L/metabolismo , Técnicas de Cultura de Células , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Escherichia coli/genética , Fibrinogênio/metabolismo , Heparitina Sulfato/farmacologia , Humanos , Cinética , Estágios do Ciclo de Vida/efeitos dos fármacos , Proteólise , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/crescimento & desenvolvimentoRESUMO
Leishmania ISPs are ecotin-like natural peptide inhibitors of trypsin-family serine peptidases, enzymes that are absent from the Leishmania genome. This led to the proposal that ISPs inhibit host serine peptidases and we have recently shown that ISP2 inhibits neutrophil elastase, thereby enhancing parasite survival in murine macrophages. In this study we show that ISP1 has less serine peptidase inhibitory activity than ISP2, and in promastigotes both are generally located in the cytosol and along the flagellum. However, in haptomonad promastigotes there is a prominent accumulation of ISP1 and ISP2 in the hemidesmosome and for ISP2 on the cell surface. An L. major mutant deficient in all three ISP genes (Δisp1/2/3) was generated and compared with Δisp2/3 mutants to elucidate the physiological role of ISP1. In in vitro cultures, the Δisp1/2/3 mutant contained more haptomonad, nectomonad and leptomonad promastigotes with elongated flagella and reduced motility compared with Δisp2/3 populations, moreover it was characterized by very high levels of release of exosome-like vesicles from the flagellar pocket. These data suggest that ISP1 has a primary role in flagellar homeostasis, disruption of which affects differentiation and flagellar pocket dynamics.
Assuntos
Leishmania major/fisiologia , Inibidores de Proteases/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Células Cultivadas , Flagelos/metabolismo , Flagelos/ultraestrutura , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Leishmania major/genética , Leishmania major/metabolismo , Leishmania major/ultraestrutura , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteases/química , Transporte Proteico , Proteínas Secretadas Inibidoras de Proteinases/química , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Serina Proteases/químicaRESUMO
Leishmania major is a protozoan parasite that causes skin ulcerations in cutaneous leishmaniasis. In the mammalian host, the parasite resides in professional phagocytes and has evolved to avoid killing by macrophages. We identified L. major genes encoding inhibitors of serine peptidases (ISPs), which are orthologs of bacterial ecotins, and found that ISP2 inhibits trypsin-fold S1A family peptidases. In this study, we show that L. major mutants deficient in ISP2 and ISP3 (Δisp2/3) trigger higher phagocytosis by macrophages through a combined action of the complement type 3 receptor, TLR4, and unregulated activity of neutrophil elastase (NE), leading to parasite killing. Whereas all three components are required to mediate enhanced parasite uptake, only TLR4 and NE are necessary to promote parasite killing postinfection. We found that the production of superoxide by macrophages in the absence of ISP2 is the main mechanism controlling the intracellular infection. Furthermore, we show that NE modulates macrophage infection in vivo, and that the lack of ISP leads to reduced parasite burdens at later stages of the infection. Our findings support the hypothesis that ISPs function to prevent the activation of TLR4 by NE during the Leishmania-macrophage interaction to promote parasite survival and growth.
Assuntos
Líquido Intracelular/parasitologia , Leishmania major/enzimologia , Leishmania major/crescimento & desenvolvimento , Elastase de Leucócito/fisiologia , Macrófagos Peritoneais/parasitologia , Inibidores de Serina Proteinase/fisiologia , Serpinas/fisiologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Interações Hospedeiro-Parasita/imunologia , Líquido Intracelular/enzimologia , Líquido Intracelular/imunologia , Leishmania major/imunologia , Elastase de Leucócito/antagonistas & inibidores , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/imunologia , Inibidores de Serina Proteinase/deficiência , Inibidores de Serina Proteinase/genética , Serpinas/deficiência , Serpinas/genética , Receptor 4 Toll-Like/deficiênciaRESUMO
Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, provoking liver and spleen tissue destruction that is lethal unless treated. The parasite replicates in macrophages and modulates host microbicidal responses. We have previously reported that neutrophil elastase (NE) is required to sustain L. donovani intracellular growth in macrophages through the induction of interferon beta (IFN-ß). Here, we show that the gene expression of IFN-ß by infected macrophages was reduced by half when TLR4 was blocked by pre-treatment with neutralizing antibodies or in macrophages from tlr2-/- mice, while the levels in macrophages from myd88-/- mice were comparable to those from wild-type C57BL/6 mice. The neutralization of TLR4 in tlr2-/- macrophages completely abolished induction of IFN-ß gene expression upon parasite infection, indicating an additive role for both TLRs. Induction of type I interferon (IFN-I), OASL2, SOD1, and IL10 gene expression by L. donovani was completely abolished in macrophages from NE knock-out mice (ela2-/-) or from protein kinase R (PKR) knock-out mice (pkr-/-), and in C57BL/6 macrophages infected with transgenic L. donovani expressing the inhibitor of serine peptidase 2 (ISP2). Parasite intracellular growth was impaired in pkr-/- macrophages but was fully restored by the addition of exogenous IFN-ß, and parasite burdens were reduced in the spleen of pkr-/- mice at 7 days, as compared to the 129Sv/Ev background mice. Furthermore, parasites were unable to grow in macrophages lacking TLR3, which correlated with lack of IFN-I gene expression. Thus, L. donovani engages innate responses in infected macrophages via TLR2, TLR4, and TLR3, via downstream PKR, to induce the expression of pro-survival genes in the host cell, and guarantee parasite intracellular development.
Assuntos
Interferon-alfa/metabolismo , Interferon beta/metabolismo , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Macrófagos Peritoneais/imunologia , Transdução de Sinais/genética , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , eIF-2 Quinase/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Feminino , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Técnicas de Inativação de Genes , Interferon-alfa/genética , Interferon beta/genética , Leishmaniose Visceral/parasitologia , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sulfonamidas/farmacologia , Receptor 2 Toll-Like/genética , Receptor 3 Toll-Like/genética , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/imunologia , eIF-2 Quinase/genéticaRESUMO
Visceral leishmaniasis is associated with hepato-splenomegaly and altered immune and hematological parameters in both preclinical animal models and humans. We studied mouse experimental visceral leishmaniasis caused by Leishmania infantum and Leishmania donovani in BALB/c mice using dual RNA-seq to investigate the transcriptional response of host and parasite in liver and spleen. We identified only 4 species-specific parasite expressed genes (SSPEGs; log2FC >1, FDR <0.05) in the infected spleen, and none in the infected liver. For the host transcriptome, we found 789 differentially expressed genes (DEGs; log2FC >1, FDR <0.05) in the spleen that were common to both infections, with IFNγ signaling and complement and coagulation cascade pathways highly enriched, and an additional 286 and 186 DEGs that were selective to L. donovani and L. infantum infection, respectively. Among those, there were network interactions between genes of amino acid metabolism and PPAR signaling in L. donovani infection and increased IL1ß and positive regulation of fatty acid transport in L. infantum infection, although no pathway enrichment was observed. In the liver, there were 1,939 DEGs in mice infected with either L. infantum or L. donovani in comparison to uninfected mice, and the most enriched pathways were IFNγ signaling, neutrophil mediated immunity, complement and coagulation, cytokine-chemokine responses, and hemostasis. Additionally, 221 DEGs were selective in L. donovani and 429 DEGs in L. infantum infections. These data show that the host response for these two visceral leishmaniasis infection models is broadly similar, and â¼10% of host DEGs vary in infections with either parasite species. IMPORTANCE Visceral leishmaniasis (VL) is caused by two species of Leishmania parasites, L. donovani in the Old World and L. infantum in the New World and countries bordering the Mediterranean. Although cardinal features such as hepato-splenomegaly and alterations in blood and immune function are evident, clinical presentation may vary by geography, with for example severe bleeding often associated with VL in Brazil. Although animal models of both L. donovani and L. infantum have been widely used to study disease pathogenesis, a direct side-by-side comparison of how these parasites species impact the infected host and/or how they might respond to the stresses of mammalian infection has not been previously reported. Identifying common and distinct pathways to pathogenesis will be important to ensure that new therapeutic or prophylactic approaches will be applicable across all forms of VL.
Assuntos
Leishmania donovani , Leishmania infantum , Leishmaniose Visceral , Parasitos , Animais , Leishmania donovani/genética , Leishmania infantum/genética , Leishmaniose Visceral/parasitologia , Mamíferos/genética , Camundongos , Camundongos Endogâmicos BALB C , Parasitos/genética , RNA-Seq , EsplenomegaliaRESUMO
Trypanosoma brucei rhodesiense is one of the causative agents of Human African Trypanosomiasis (HAT), known as sleeping sickness. The parasite invades the central nervous system and causes severe encephalitis that is fatal if left untreated. We have previously identified ecotin-like inhibitors of serine peptidases, named ISPs, in trypanosomatid parasitic protozoa. Here, we investigated the role of ISP2 in bloodstream form T. b. rhodesiense. We generated gene-deficient mutants lacking ISP2 (Δisp2), which displayed a growth profile in vitro similar to that of wild-type (WT) parasites. C57BL/6 mice infected with Δisp2 displayed lower blood parasitemia, a delayed hind leg pathological phenotype and survived longer. The immune response was examined at two time-points that corresponded with two peaks of parasitemia. At 4 days, the spleens of Δisp2-infected mice had a greater percentage of NOS2+ myeloid cells, IFN-γ+-NK cells and increased TNF-α compared to those infected with WT and parasites re-expressing ISP2 (Δisp2:ISP2). By 13 days the increased NOS2+ population was sustained in Δisp2-infected mice, along with increased percentages of monocyte-derived dendritic cells, as well as CD19+ B lymphocytes, and CD8+ and CD4+ T lymphocytes. Taken together, these findings indicate that ISP2 contributes to T. b. rhodesiense virulence in mice and attenuates the inflammatory response during early infection.
Assuntos
Inibidores de Serina Proteinase/metabolismo , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/imunologia , Animais , Animais Geneticamente Modificados , Anticorpos Monoclonais , Feminino , Inflamação , Camundongos Endogâmicos C57BL , Inibidores de Serina Proteinase/genética , Baço/parasitologia , VirulênciaRESUMO
Cruzipains are the main papain-like cysteine proteases of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Encoded by a multigenic family, previous studies have estimated the presence of dozens of copies spread over multiple chromosomes in different parasite strains. Here, we describe the complete gene repertoire of cruzipain in three parasite strains, their genomic organization, and expression pattern throughout the parasite life cycle. Furthermore, we have analyzed primary sequence variations among distinct family members as well as structural differences between the main groups of cruzipains. Based on phylogenetic inferences and residue positions crucial for enzyme function and specificity, we propose the classification of cruzipains into two families (I and II), whose genes are distributed in two or three separate clusters in the parasite genome, according with the strain. Family I comprises nearly identical copies to the previously characterized cruzipain 1/cruzain, whereas Family II encompasses three structurally distinct sub-types, named cruzipain 2, cruzipain 3, and cruzipain 4. RNA-seq data derived from the CL Brener strain indicates that Family I genes are mainly expressed by epimastigotes, whereas trypomastigotes mainly express Family II genes. Significant differences in the active sites among the enzyme sub-types were also identified, which may play a role in their substrate selectivity and impact their inhibition by small molecules.
Assuntos
Domínio Catalítico , Cisteína Endopeptidases/genética , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimentoRESUMO
Ecotin is a potent inhibitor of family S1A serine peptidases, enzymes lacking in the protozoan parasite Leishmania major. Nevertheless, L. major has three ecotin-like genes, termed inhibitor of serine peptidase (ISP). ISP1 is expressed in vector-borne procyclic and metacyclic promastigotes, whereas ISP2 is also expressed in the mammalian amastigote stage. Recombinant ISP2 inhibited neutrophil elastase, trypsin and chymotrypsin with K(i)s between 7.7 and 83 nM. L. major ISP2-ISP3 double null mutants (Deltaisp2/3) were created. These grew normally as promastigotes, but were internalized by macrophages more efficiently than wild-type parasites due to the upregulation of phagocytosis by a mechanism dependent on serine peptidase activity. Deltaisp2/3 promastigotes transformed to amastigotes, but failed to divide for 48 h. Intracellular multiplication of Deltaisp2/3 was similar to wild-type parasites when serine peptidase inhibitors were present, suggesting that defective intracellular growth results from the lack of serine peptidase inhibition during promastigote uptake. Deltaisp2/3 mutants were more infective than wild-type parasites to BALB/c mice at the early stages of infection, but became equivalent as the infection progressed. These data support the hypothesis that ISPs of L. major target host serine peptidases and influence the early stages of infection of the mammalian host.
Assuntos
Leishmania major/imunologia , Leishmania major/patogenicidade , Macrófagos/parasitologia , Proteínas de Protozoários/metabolismo , Inibidores de Serina Proteinase/metabolismo , Sequência de Aminoácidos , Animais , Quimotripsina/antagonistas & inibidores , Deleção de Genes , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Elastase de Leucócito/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Fagocitose/imunologia , Proteínas de Protozoários/genética , Alinhamento de Sequência , Inibidores de Serina Proteinase/genética , Tripsina/metabolismoRESUMO
Trypanosoma cruzi relies on highly galactosylated molecules as virulence factors and the enzymes involved in sugar biosynthesis are potential therapeutic targets. The synthesis of UDP-galactose in T. cruzi requires the activity of phosphoglucomutase (PGM), the enzyme that catalyzes the interconversion of glucose-6-phosphate and glucose-1-phosphate. Several enzymes that participate in carbohydrate metabolism in trypanosomes are confined to specialized peroxisome-like organelles called glycosomes. The majority of glycosomal proteins contain peroxisome-targeting signals (PTS) at the COOH- or at the amino-terminus, which drive their transport to glycosomes. We had previously identified the T. cruzi PGM gene (TcPGM) and demonstrated that it encodes a functional enzyme. Here, we show that, in contrast to yeast and mammalian cells, TcPGM resides in glycosomes of the parasite. However, no classical PTS1 or PTS2 motif is present in its sequence. We investigated glycosomal targeting by generating T. cruzi cell lines expressing different domains of TcPGM fused to the green fluorescent protein (GFP). The analysis of the subcellular localization of fusion proteins revealed that an internal targeting signal of TcPGM, residing between amino acid residues 260 and 380, is capable of targeting GFP to glycosomes. These results demonstrate that, in T. cruzi, PGM import into glycosomes is mediated by a novel non-PTS domain that is located internally in the protein.
Assuntos
Microcorpos/metabolismo , Fosfoglucomutase/química , Fosfoglucomutase/metabolismo , Sinais Direcionadores de Proteínas , Trypanosoma cruzi/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Fosfoglucomutase/genética , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Distribuição Tecidual , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismoRESUMO
Trypanosoma cruzi trypomastigotes rely on the structural diversity of the cruzipain family of cysteine proteases to infect and multiply in nonprofessional phagocytic cells. Herein, we will review studies demonstrating that the interplay of cruzipain with peptidase inhibitors modulate infection outcome in a variety of experimental settings. Studies with a panel of T. cruzi strains showed that parasite ability to invade human smooth muscle cells is influenced by the balance between cruzipain and chagasin, a tight binding endogenous inhibitor of papain-like cysteine proteases. Analysis of T. cruzi interaction with endothelial cells and cardiomyocytes indicated that parasite-induced activation of bradykinin receptors drive host cell invasion by [Ca2+]I-dependent pathways. Clues about the mechanisms underlying kinin generation in vivo by trypomastigotes came from analysis of the dynamics of edematogenic inflammation. Owing to plasma extravasation, the blood-borne kininogens accumulate in peripheral sites of infection. Upon diffusion in peripheral tissues, kininogens (i.e., type III cystatins) bind to heparan sulphate chains, thus constraining interactions of the cystatin-like inhibitory domains with cruzipain. The cell bound kininogens are then turned into facile substrates for cruzipain, which liberates kinins in peripheral tissues. Subjected to tight-regulation by kinin-degrading metallopeptidases, such as angiotensin converting enzyme, the short-lived kinin peptides play a dual role in the host-parasite balance. Rather than unilaterally stimulating pathogen infectivity via bradykinin receptors, the released kinins potently induce dendritic cell maturation, thus stimulating type 1 immune responses. In conclusion, the studies reviewed herein illustrate how regulation of parasite proteases may affect host-parasite equilibrium in the course of IT cruzi infection.