RESUMO
Cancer patients undergoing chemotherapy continue to experience the debilitating side effect of nausea associated with their treatment. Although acute and delayed vomiting have become well managed with the advent of the 5-hydroxytryptamine-3 antagonists, such as ondansetron, and the neurokinin-1 receptor antagonists (such as aprepitant), nausea is still a relatively unmanaged adverse side effect of chemotherapy treatment. When nausea and vomiting are not properly managed, patients are at a greater risk of developing anticipatory nausea (AN)--a conditional association between chemotherapy-related treatment cues, such as the clinic environment, and the subsequent nausea experienced. Once it develops, AN is refractive to pharmacological treatment with classic antiemetics. Currently, non-specific antianxiety drugs (benzodiazepines) are prescribed; however, their sedating side effects are undesirable. Here, we review the animal models of AN that have been developed. These preclinical models have aided researchers in the evaluation of potentially efficacious pharmacological treatments for AN. Accumulating evidence using animal models demonstrates that cannabinoid compounds effectively reduce AN, without producing sedation. These results highlight the need for human clinical trials evaluating the efficacy of these compounds.
Assuntos
Antieméticos/uso terapêutico , Modelos Animais de Doenças , Náusea/tratamento farmacológico , Animais , Humanos , Náusea/etiologiaRESUMO
A taste associated with emetic drugs produces conditioned disgust reactions in rats (predominantly gaping), unlike nonemetic drugs that can still produce conditioned taste avoidance but not conditioned disgust. That difference suggests nausea is a prerequisite for learning disgust reactions to tastes. Depletion of forebrain serotonin (5-HT) by 5,7-dihydroxytryptamine (5,7-DHT) lesions of the dorsal raphe nucleus and median raphe nucleus prevents LiCl-induced conditioned disgust reactions (Limebeer et al., 2004). Here we demonstrate that partial depletion of 5-HT in the insular cortex (IC) prevents LiCl-induced conditioned disgust reactions. Furthermore, a double dissociation occurred in the partial regulation of disgust and taste avoidance by selective 5-HT(3) receptor antagonism/agonism in the posterior (granular) region of the IC and the anterior (dorsal agranular) region of the IC, respectively. Intracranial administration of the 5-HT(3) receptor antagonist, ondansetron (OND), to the posterior IC impaired the establishment of LiCl-induced conditioned gaping reactions, but not LiCl-induced conditioned taste avoidance (CTA). Likewise, posterior IC administration of the 5-HT(3) receptor agonist m-chlorophenylbiguanide (mCPBG) enhanced the establishment of LiCl-induced conditioned gaping and produced conditioned gaping on its own (which was prevented by intracranially administered OND), with no effect on CTA. On the other hand, anterior IC administration of OND partially reduced the establishment of LiCl-induced CTA, and mCPBG produced a weak CTA, both without effect on gaping. These results suggest that activation of 5-HT(3) receptors in the posterior IC is important for the production of nausea-induced conditioned disgust reactions, while activation of 5-HT(3) receptors in the anterior IC are involved in the production of CTA.
Assuntos
Aprendizagem da Esquiva/fisiologia , Córtex Cerebral/fisiologia , Condicionamento Clássico/fisiologia , Emoções/fisiologia , Náusea/fisiopatologia , Receptores 5-HT3 de Serotonina/fisiologia , Paladar/fisiologia , 5,6-Di-Hidroxitriptamina/toxicidade , Animais , Biguanidas/farmacologia , Córtex Cerebral/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Masculino , Náusea/psicologia , Ondansetron/farmacologia , Ratos , Ratos Sprague-Dawley , Sacarina/farmacologia , Agonistas do Receptor 5-HT3 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologiaRESUMO
Several lines of evidence suggest that there may be a shared vulnerability to acquire behaviors motivated by strong incentive stimuli. Non-food restricted male Sprague-Dawley rats (n = 78) underwent place conditioning with Oreos, and were subsequently tested on cocaine self-administration (SA) on fixed and progressive ratios, as well as extinction and reinstatement by cocaine primes and by consumption of Oreos. Although there was a group preference for the Oreo-paired compartment, at the individual level some rats (69%) displayed a preference and others did not. In cocaine SA, 'preference' rats achieved higher break points on a progressive ratio, and displayed greater responding during extinction and cocaine-induced reinstatement. Within the context of this study, Oreo-cocaine cross-reinstatement was not observed. In a control study, rats (n = 29) conditioned with a less palatable food (rice cakes) also displayed individual differences in place preference, but not on subsequent cocaine tests. These findings indicate that there is a relationship between incentive learning promoted by palatable foods and by cocaine. This supports the hypothesis that co-morbid food-drug addictions may result from a shared vulnerability to acquire behaviors motivated by strong incentives.
Assuntos
Comportamento Aditivo/psicologia , Cocaína/farmacologia , Suscetibilidade a Doenças , Inibidores da Captação de Dopamina/farmacologia , Comportamento de Procura de Droga/fisiologia , Motivação , Análise de Variância , Animais , Comportamento de Escolha/fisiologia , Cocaína/administração & dosagem , Condicionamento Operante/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Extinção Psicológica/fisiologia , Preferências Alimentares/fisiologia , Humanos , Infusões Intravenosas , Masculino , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Autoadministração/estatística & dados numéricos , Fatores de TempoRESUMO
Introduction: Cancer patients report nausea as a side effect of their chemotherapy treatment. Using the pre-clinical rodent model of acute nausea-lithium chloride (LiCl)-induced conditioned gaping-our group has demonstrated that exogenous cannabinoids may have antinausea potential. Materials and Methods: With the goal of evaluating the role of sex as a factor in pre-clinical research, we first compared the conditioned gaping reactions produced by varying doses of LiCl in male and female rats using the taste reactivity test (Experiment 1). Results: LiCl produced dose-dependent conditioned gaping similarly in male and female rats with the highest dose (127.2 mg/kg) producing robust conditioned gaping, with this dose used in subsequent experiments. Next, we examined the antinausea potential of THC (Experiment 2), CBD (Experiment 3), cannabidiolic acid (CBDA; Experiment 4) and oleoyl alanine (OlAla; Experiment 5) in both male and female rats. THC, CBD, CBDA, and OlAla dose dependently reduced conditioned gaping in both male and female rats in a similar manner. Conclusions: These results suggest that cannabinoids may be equally effective in treating nausea in both males and females.
Assuntos
Antieméticos , Canabidiol , Canabinoides , Humanos , Feminino , Masculino , Ratos , Animais , Canabidiol/efeitos adversos , Ratos Sprague-Dawley , Dronabinol/efeitos adversos , Antieméticos/farmacologia , Antieméticos/uso terapêutico , Caracteres Sexuais , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Náusea/induzido quimicamente , Náusea/tratamento farmacológicoRESUMO
RATIONALE: The fatty acid amide oleoyl glycine (OlGly) and its more stable methylated form oleoyl alanine (OlAla) reduce naloxone-precipitated morphine withdrawal (MWD)-induced conditioned gaping (nausea) responses in rats. In addition, OlGly has been shown to reduce lithium chloride (LiCl)-induced conditioned gaping in rats and vomiting in Suncus murinus (house musk shrews). OBJECTIVES: Here, we compared the potential of these fatty acid amides to maintain their anti-nausea/anti-emetic effect over a delay. The following experiments examined the potential of a wider dose range of OlGly and OlAla to interfere with (1) LiCl-induced conditioned gaping in rats and (2) LiCl-induced vomiting in shrews, when administered 20 or 70 min prior to illness. RESULTS: OlAla (1, 5, 20 mg/kg) reduced LiCl-induced conditioned gaping, with OlGly only effective at the high dose (20 mg/kg), with no effect of pretreatment delay time. At the high dose of 20 mg/kg, OlGly increased passive drips during conditioning suggesting a sedative effect. In shrews, both OlGly and OlAla (1, 5 mg/kg) suppressed LiCl-induced vomiting, with no effect of pretreatment delay. OlAla more effectively suppressed vomiting, with OlAla (5 mg/kg) also increasing the latency to the first vomiting reaction. CONCLUSIONS: OlAla was more effective than OlGly in reducing both LiCl-induced gaping in rats and LiCl-induced vomiting in shrews. These findings provide further evidence that these fatty acid amides may be useful treatments for nausea and vomiting, with OlAla demonstrating superior efficacy.
Assuntos
Cloreto de Lítio , Musaranhos , Alanina/farmacologia , Animais , Glicina/farmacologia , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Vômito/induzido quimicamenteRESUMO
Currently, peripheral tissue distribution of cannabinoids after treatment is poorly understood. This pilot study sought to examine the early tissue distribution of major cannabinoids 30 minutes following an intraperitoneal injection of vehicle (1:9 Tween 80/SAL), and doses of THC (1 mg/kg) and CBD (5 mg/kg) that are feasible for human consumption in serum, adipose, brain, lung, liver, jejunum, and muscle of male Sprague-Dawley rats. The jejunum and adipose were most enriched in THC. Similarly, CBD was enriched in the jejunum and adipose but also the liver. In contrast, the brain had the lowest concentration of cannabinoids relative to other tissues. The liver had the greatest concentration of the THC metabolites, 11-OH-THC and COOH-THC, compared to all other tissues. Overall, these findings highlight broad tissue distribution and marked differences in tissue concentration not previously appreciated. Thus, as cannabinoid research continues to rapidly grow, consideration of the potential bioactive effects of these molecules in peripheral tissues is warranted in future studies.
Assuntos
Canabinoides/administração & dosagem , Canabinoides/farmacologia , Distribuição Tecidual/fisiologia , Animais , Canabinoides/metabolismo , Injeções Intraperitoneais , Masculino , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacosRESUMO
Introduction: Cannabinoid hyperemesis syndrome (CHS) is characterized by intense nausea and vomiting brought on by the use of high-dose Δ9-tetrahydrocannabinol (THC), the main psychotropic compound in cannabis. Cannabidiol (CBD), a nonpsychotropic compound found in cannabis, has been shown to interfere with some acute aversive effects of THC. In this study, we evaluated if CBD would interfere with THC-induced nausea through a 5-HT1A receptor mechanism as it has been shown to interfere with nausea produced by lithium chloride (LiCl). Since CHS has been attributed to a dysregulated stress response, we also evaluated if CBD would interfere with THC-induced increase in corticosterone (CORT). Materials and Methods: The potential of CBD (5 mg/kg, ip) to suppress THC-induced conditioned gaping (a measure of nausea) was evaluated in rats, as well as the potential of the 5-HT1A receptor antagonist, WAY-100635 (WAY; 0.1 mg/kg, ip), to reverse the suppression of THC-induced conditioned gaping by CBD. Last, the effect of CBD (5 mg/kg, ip) on THC-induced increase in serum CORT concentration was evaluated. Results: Pretreatment with CBD (5 mg/kg, ip) interfered with the establishment of THC-induced conditioned gaping (p=0.007, relative to vehicle [VEH] pretreatment), and this was reversed by pretreatment with 0.1 mg/kg WAY. This dose of WAY had no effect on gaping on its own. THC (10 mg/kg, ip) significantly increased serum CORT compared with VEH-treated rats (p=0.04). CBD (5 mg/kg, ip) pretreatment reversed the THC-induced increase in CORT. Conclusions: CBD attenuated THC-induced nausea as well as THC-induced elevation in CORT. The attenuation of THC-induced conditioned gaping by CBD was mediated by its action on 5-HT1A receptors, similar to that of LiCl-induced nausea.
Assuntos
Antieméticos , Canabidiol , Canabinoides , Cannabis , Animais , Antieméticos/farmacologia , Canabidiol/farmacologia , Agonistas de Receptores de Canabinoides/efeitos adversos , Canabinoides/efeitos adversos , Dronabinol/farmacologia , Cloreto de Lítio/efeitos adversos , Náusea/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/uso terapêutico , Serotonina/efeitos adversos , Vômito/induzido quimicamenteRESUMO
There are indications that sugars in the diet can play a role in vulnerability to opioid abuse. The current study examined a range of neuro-behavioural interactions between oxycodone (OXY) and high fructose corn syrup (HFCS). Male Sprague-Dawley rats had access to HFCS (0 or 50%) over 26 days in their home cages and were subsequently tested on place conditioning induced by 0, 0.16 and 2.5 mg/kg OXY (3 pairings of drug and saline, each 30 min), as well as on locomotor responses to 0, 0.16 and 2.5 mg/kg OXY, and in-vivo microdialysis was employed to measure dopamine (DA) levels in the nucleus accumbens (NAc) in response to 0 and 2.5 mg/kg OXY. A complex set of interactions between HFCS exposure and responses to OXY were observed: HFCS increased place preference induced by OXY, it enhanced the suppressant effect of OXY on locomotion, and it attenuated OXY-induced elevation in DA overflow in the NAc. Taken together, these findings suggest that nutrition has the potential to influence some responses to opioids which may be relevant to their abuse.
Assuntos
Condicionamento Psicológico/efeitos dos fármacos , Xarope de Milho Rico em Frutose/farmacologia , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Opioides/psicologia , Oxicodona/farmacologia , Analgésicos Opioides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Dieta , Dopamina/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/metabolismo , Ratos , Ratos Sprague-Dawley , RecompensaRESUMO
Introduction: Nausea and vomiting are the most distressing symptoms reported by oncology patients undergoing anticancer treatment. With the currently available treatments, vomiting and especially nausea remain problematic, highlighting the need for alternative treatments. Discussion: Here we review in vitro and in vivo evidence for the effectiveness of the nonpsychoactive cannabinoid cannabidiol (CBD) in managing nausea and vomiting. In addition, we also review the evidence for CBD's acidic precursor, cannabidiolic acid (CBDA), and a methylated version of CBDA (CBDA-ME) in these phenomena. Finally, we explore the potential role of CBD in the treatment of cannabinoid hyperemesis syndrome. Conclusions: CBD has demonstrated efficacy in reducing nausea and vomiting, with CBDA and CBDA-ME being more potent. The data suggest a need for these compounds to be evaluated in clinical trials for their ability to reduce nausea and/or vomiting.
Assuntos
Canabidiol , Canabinoides , Canabidiol/uso terapêutico , Canabinoides/uso terapêutico , Ésteres , Humanos , Náusea/induzido quimicamente , Vômito/induzido quimicamenteRESUMO
RATIONALE: Stress is a well-known risk factor for anhedonia, and its impacts on social reward functions may be mitigated by its controllability. Moreover, there are questions about the effectiveness of selective serotonin reuptake inhibitors (SSRIs) on improving social hedonic functioning deficits characteristic of major depression. OBJECTIVES: The current study in male Sprague-Dawley rats investigated the effects of uncontrollable stress on responses to social incentive stimuli and possible modulation by the SSRI escitalopram (ESC). METHODS: The effects of inescapable foot-shocks on preferential responses to a conspecific, and to a compartment that was previously paired with the presence of a conspecific, were assessed in a Y-apparatus in rats that received 0, 5, or 10 mg/kg ESC. RESULTS: Although inescapable foot-shock exposure did not significantly alter the investigation of the conspecific, it did impair the response to the social-paired compartment and, importantly, this impairment was reversed by ESC. CONCLUSION: These results indicate that psychophysical stress can negatively impact reactivity to learned social rewards and that SSRI administration can have positive therapeutic effects.
Assuntos
Citalopram , Motivação , Animais , Citalopram/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Recompensa , Inibidores Seletivos de Recaptação de Serotonina/farmacologiaRESUMO
The endogenous amide N-Oleoylglycine (OlGly) and its analog N-Oleoylalanine (OlAla), have been shown to interfere with the affective and somatic responses to acute naloxone-precipitated MWD in male rats. Here we evaluated the potential of a single dose (5 mg/kg, ip) which alleviates withdrawal of these endogenous fatty acid amides to modify tolerance to anti-nociception, hyperthermia, and suppression of locomotion produced by morphine in male Sprague-Dawley rats. Although rats did develop tolerance to the hypolocomotor and analgesic effects of morphine, they did not develop tolerance to the hyperthermic effects of this substance. Administration of neither OlGly nor OlAla interfered with the establishment of morphine tolerance, nor did they modify behavioral responses elicited by morphine on any trial. These results suggest that the effects of OlGly and OlAla on opiate dependence may be limited to naloxone-precipitated withdrawal effects.
RESUMO
Rationale: The endocannabinoidome mediators, N-Oleoylglycine (OlGly) and N-Oleoylalanine (OlAla), have been shown to reduce acute naloxone-precipitated morphine withdrawal affective and somatic responses. Objectives: To determine the role and mechanism of action of OlGly and OlAla in withdrawal responses from chronic exposure to opiates in male Sprague-Dawley rats. Methods: Opiate withdrawal was produced: 1) spontaneously 24 h following chronic exposure to escalating doses of morphine over 14 days (Experiments 1 and 2) and steady-state exposure to heroin by minipumps for 12 days (Experiment 3), 2) by naloxone injection during steady-state heroin exposure (Experiment 4), 3) by naloxone injection during operant heroin self-administration (Experiment 5). Results: In Experiment 1, spontaneous morphine withdrawal produced somatic withdrawal reactions. The behavioral withdrawal reactions were accompanied by suppressed endogenous levels of OlGly in the nucleus accumbens, amygdala, and prefrontal cortex, N-Arachidonylglycerol and OlAla in the amygdala, 2-arachidonoylglycerol in the nucleus accumbens, amygdala and interoceptive insular cortex, and by changes in colonic microbiota composition. In Experiment 2, treatment with OlAla, but not OlGly, reduced spontaneous morphine withdrawal responses. In Experiment 3, OlAla attenuated spontaneous steady-state heroin withdrawal responses at both 5 and 20 mg/kg; OlGly only reduced withdrawal responses at the higher dose of 20 mg/kg. Experiment 4 demonstrated that naloxone-precipitated heroin withdrawal from steady-state exposure to heroin (7 mg/kg/day for 12 days) is accompanied by tissue-specific changes in brain or gut endocannabinoidome mediator, including OlGly and OlAla, levels and colonic microbiota composition, and that OlAla (5 mg/kg) attenuated behavioural withdrawal reactions, while also reversing some of the changes in brain and gut endocannabinoidome and gut microbiota induced by naloxone. Experiment 5 demonstrated that although OlAla (5 mg/kg) did not interfere with operant heroin self-administration on its own, it blocked naloxone-precipitated elevation of heroin self-administration behavior. Conclusion: These results suggest that OlAla and OlGly are two endogenous mediators whose brain concentrations respond to chronic opiate treatment and withdrawal concomitantly with changes in colon microbiota composition, and that OlAla may be more effective than OlGly in suppressing chronic opiate withdrawal responses.
RESUMO
Introduction: Cannabinoid hyperemesis syndrome is becoming a more prominently reported side effect of cannabis containing high-dose Δ9-tetrahydrocannabinol (THC) and designer cannabinoid drugs such as "Spice." One active ingredient that has been found in "Spice" is 1-pentyl-3-(1-naphthoyl)indole (JWH-018), a synthetic full agonist of the cannabinoid 1 (CB1) receptor. In this study, we evaluated the potential of different doses of JWH-018 to produce conditioned gaping in rats, an index of nausea. Materials and Methods: Rats received 3 daily conditioning trials in which saccharin was paired with JWH-018 (0.0, 0.1, 1, and 3 mg/kg, intraperitoneal [i.p.]). Then the potential of pretreatment with the CB1 antagonist, rimonabant (SR), to prevent JWH-018-induced conditioned gaping was determined. To begin to understand the potential mechanism underlying JWH-018-induced nausea, serum collected from trunk blood was subjected to a corticosterone (CORT) analysis in rats receiving three daily injections with vehicle (VEH) or JWH-018 (3 mg/kg). Results: At doses of 1 and 3 mg/kg (i.p.), JWH-018 produced nausea-like conditioned gaping reactions. The conditioned gaping produced by 3 mg/kg JWH-018 was reversed by pretreatment with rimonabant, which did not modify gaping on its own. Treatment with JWH-018 elevated serum CORT levels compared to vehicle-treated rats. Conclusions: As we have previously reported with high-dose THC, JWH-018 produced conditioned gaping in rats, reflective of a nausea effect mediated by its action on CB1 receptors and accompanied by elevated CORT, reflective of hypothalamic-pituitary-adrenal (HPA) activation.
RESUMO
RATIONALE: When acutely administered intraperitoneally, the non-psychoactive cannabinoid cannabidiol (CBD), its acidic precursor cannabidiolic acid (CBDA) and a stable methyl ester of CBDA (HU-580) reduce lithium chloride (LiCl)-induced conditioned gaping in male rats (a selective preclinical model of acute nausea) via activation of the serotonin 1A (5-HT1A) receptor. OBJECTIVES: To utilise these compounds to manage nausea in the clinic, we must determine if their effectiveness is maintained when injected subcutaneously (s.c) and when repeatedly administered. First, we compared the effectiveness of each of these compounds to reduce conditioned gaping following repeated (7-day) and acute (1-day) pretreatments and whether these anti-nausea effects were mediated by the 5-HT1A receptor. Next, we assessed whether the effectiveness of these compounds can be maintained when administered prior to each of 4 conditioning trials (once per week). We also evaluated the ability of repeated CBD (7 days) to reduce LiCl-induced vomiting in Suncus murinus. Finally, we examined whether acute CBD was equally effective in male and female rats. RESULTS: Both acute and repeated (7 day) s.c. administrations of CBD (5 mg/kg), CBDA (1 µg/kg) and HU-580 (1 µg/kg) similarly reduced LiCl-induced conditioned gaping, and these effects were blocked by 5HT1A receptor antagonism. When administered over 4 weekly conditioning trials, the anti-nausea effectiveness of each of these compounds was also maintained. Repeated CBD (5 mg/kg, s.c.) maintained its anti-emetic efficacy in S. murinus. Acute CBD (5 and 20 mg/kg, s.c.) administration reduced LiCl-induced conditioned gaping similarly in male and female rats. CONCLUSION: When administered repeatedly (7 days), CBD, CBDA and HU-580 did not lose efficacy in reducing nausea and continued to act via agonism of the 5-HT1A receptor. When administered across 4 weekly conditioning trials, they maintained their effectiveness in reducing LiCl-induced nausea. Repeated CBD also reduced vomiting in shrews. Finally, CBD's anti-nausea effects were similar in male and female rats. This suggests that these cannabinoids may be useful anti-nausea and anti-emetic treatments for chronic conditions, without the development of tolerance.
Assuntos
Canabidiol/administração & dosagem , Canabinoides/administração & dosagem , Náusea/tratamento farmacológico , Vômito/tratamento farmacológico , Animais , Antieméticos/administração & dosagem , Esquema de Medicação , Feminino , Cloreto de Lítio/toxicidade , Masculino , Náusea/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Musaranhos , Resultado do Tratamento , Vômito/induzido quimicamenteRESUMO
OBJECTIVE: The addition of sweeteners to alcoholic beverages is thought to facilitate heavy alcohol consumption, and this may be of particular concern when the additive is high fructose corn syrup (HFCS). METHODS: Four experiments in male Sprague-Dawley rats were performed to investigate whether the addition of 25% HFCS to ethanol (5%, 10%, and 20% v/v ethanol) would alter its intraoral operant self-administration, palatability, and sensitivity to food deprivation stress. RESULTS: As anticipated, HFCS drastically increased ethanol intake, and this effect appeared driven by its caloric value. Importantly, HFCS increased the persistence of operant responding following extinction in animals trained to self-administer the combination, and the addition of HFCS to ethanol changed subsequent responses to ethanol, including increased palatability and intake. CONCLUSIONS: These results in rats suggest that the addition of HFCS to the list of ingredients in sweetened alcoholic beverages could play a significant role in the harmful consumption of ethanol-containing beverages.
Assuntos
Consumo de Bebidas Alcoólicas , Etanol/administração & dosagem , Xarope de Milho Rico em Frutose , Animais , Bebidas , Xarope de Milho Rico em Frutose/administração & dosagem , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
RATIONALE: This study evaluated the potential of combined cannabis constituents to reduce nausea. OBJECTIVES: Using the lithium chloride (LiCl)-induced conditioned gaping model of nausea in male rats, we aimed to: 1) Determine effective anti-nausea doses of cannabidiol (CBD) 2) Determine effectiveness and the mechanism of action of combined subthreshold doses of CBD and Δ9-tetrahydrocannabinol (THC) 3) Determine effective doses of synthetic cannabidiolic acid (CBDA) 4) Determine effective doses of synthetic tetrahydrocannabinolic acid (THCA) 5) Determine the mechanism of action for THCA 6) Determine effectiveness and the mechanism of action of combined subthreshold doses of CBDA and THCA RESULTS: CBD (0.5-5 mg/kg, intraperitoneal [i.p.]) reduces LiCl-induced conditioned gaping (but 0.1, 20, 40 mg/kg are ineffective). Combined subthreshold doses of CBD (0.1 mg/kg, i.p.) and THC (0.1 mg/kg, i.p.) produce suppression of conditioned gaping, and this effect is blocked by administration of either WAY100635 (a serotonin 1A [5-HT1A]) receptor antagonist or SR141716 (SR; a CB1 receptor antagonist). THCA (0.01 mg/kg, i.p.) reduces conditioned gaping and administration of MK886 (a peroxisome proliferator-activated receptor alpha [PPARα] antagonist) blocked THCA's anti-nausea effect. Combined subthreshold doses of CBDA (0.00001 mg/kg, i.p.) and THCA (0.001 mg/kg, i.p.) produce suppression of conditioned gaping, and this effect is blocked by administration of WAY100635 or MK886. CONCLUSION: Combinations of very low doses of CBD + THC or CBDA + THCA robustly reduce LiCl-induced conditioned gaping. Clinical trials are necessary to determine the efficacy of using single or combined cannabinoids as adjunct treatments with existing anti-emetic regimens to manage chemotherapy-induced nausea.
Assuntos
Antieméticos/administração & dosagem , Canabidiol/administração & dosagem , Canabinoides/administração & dosagem , Dronabinol/administração & dosagem , Náusea/tratamento farmacológico , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Masculino , Náusea/fisiopatologia , Ratos , Ratos Sprague-DawleyRESUMO
RATIONALE: Acute naloxone-precipitated morphine withdrawal (MWD) produces a conditioned place aversion (CPA) in rats even after one or two exposures to high-dose (20 mg/kg, sc) morphine followed 24-h later by naloxone (1 mg/kg, sc). However, the somatic withdrawal reactions produced by acute naloxone-precipitated MWD in rats have not been investigated. A recently discovered fatty acid amide, N-oleoylglycine (OlGly), which has been suggested to act as a fatty acid amide hydrolase (FAAH) inhibitor and as a peroxisome proliferator-activated receptor alpha (PPARα) agonist, was previously shown to interfere with a naloxone-precipitated MWD-induced CPA in rats. OBJECTIVES: The aims of these studies were to examine the somatic withdrawal responses produced by acute naloxone-precipitated MWD and determine whether OlGly can also interfere with these responses. RESULTS: Here, we report that following two exposures to morphine (20 mg/kg, sc) each followed by naloxone (1 mg/kg, sc) 24 h later, rats display nausea-like somatic reactions of lying flattened on belly, abdominal contractions and diarrhea, and display increased mouthing movements and loss of body weight. OlGly (5 mg/kg, ip) interfered with naloxone-precipitated MWD-induced abdominal contractions, lying on belly, diarrhea and mouthing movements in male Sprague-Dawley rats, by both a cannabinoid 1 (CB1) and a PPARα mechanism of action. Since these withdrawal reactions are symptomatic of nausea, we evaluated the potential of OlGly to interfere with lithium chloride (LiCl)-induced and MWD-induced conditioned gaping in rats, a selective measure of nausea; the suppression of MWD-induced gaping reactions by OlGly was both CB1 and PPARα mediated. CONCLUSION: These results suggest that the aversive effects of acute naloxone-precipitated MWD reflect nausea, which is suppressed by OlGly.
Assuntos
Glicina/análogos & derivados , Morfina/efeitos adversos , Naloxona/toxicidade , Antagonistas de Entorpecentes/toxicidade , Náusea/tratamento farmacológico , Ácidos Oleicos/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Animais , Feminino , Glicina/farmacologia , Glicina/uso terapêutico , Masculino , Sintomas Inexplicáveis , Dependência de Morfina/tratamento farmacológico , Dependência de Morfina/fisiopatologia , Náusea/induzido quimicamente , Náusea/fisiopatologia , Ácidos Oleicos/farmacologia , Ratos , Ratos Sprague-Dawley , Musaranhos , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/fisiopatologiaRESUMO
RATIONALE: Dysregulation of the endocannabinoid (eCB) system by high doses of Δ9-tetrahydrocannabinol (THC) is hypothesized to generate a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis contributing to cannabinoid hyperemesis syndrome (CHS). OBJECTIVES AND METHODS: Using the conditioned gaping model of nausea, we aimed to determine if pre-treatments that interfere with stress, or an anti-emetic drug, interfere with THC-induced nausea in male rats. The corticotropin-releasing hormone (CRH) antagonist, antalarmin, was given to inhibit the HPA axis during conditioning. Since eCBs inhibit stress, MJN110 (which elevates 2-arachidonylglycerol (2-AG)) and URB597 (which elevates anandamide (AEA)) were also tested. Propranolol (ß-adrenergic antagonist) and WAY-100635 (5-HT1A antagonist) attenuate HPA activation by cannabinoids and, therefore, were assessed. In humans, CHS symptoms are not alleviated by anti-emetic drugs, such as ondansetron (5-HT3 antagonist); however, benzodiazepines are effective. Therefore, ondansetron and chlordiazepoxide were tested. To determine if HPA activation by THC is dose-dependent, corticosterone (CORT) was analyzed from serum of rats treated with 0.0, 0.5, or 10 mg/kg THC. RESULTS: Antalarmin (10 and 20 mg/kg), MJN110 (10 mg/kg), URB597 (0.3 mg/kg), propranolol (2.5 and 5 mg/kg), WAY-100635 (0.5 mg/kg), and chlordiazepoxide (5 mg/kg) interfered with THC-induced conditioned gaping, but the anti-emetic ondansetron (0.1 and 0.01 mg/kg) did not. THC produced significantly higher CORT levels at 10 mg/kg than at 0.0 and 0.5 mg/kg THC. CONCLUSIONS: Treatments that interfere with the stress response also inhibit THC-induced conditioned gaping, but a typical anti-emetic drug does not, supporting the hypothesis that THC-induced nausea, and CHS, is a result of a dysregulated stress response.
Assuntos
Dronabinol/toxicidade , Endocanabinoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Náusea/induzido quimicamente , Náusea/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Animais , Antieméticos/farmacologia , Antieméticos/uso terapêutico , Agonistas de Receptores de Canabinoides/toxicidade , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Náusea/tratamento farmacológico , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
RATIONALE: Oleoyl glycine, a little studied fatty acid amide similar in structure to anandamide, interferes with nicotine addiction in mice and acute naloxone-precipitated morphine withdrawal (MWD) in rats. Because endogenous oleoyl glycine is subject to rapid enzymatic deactivation, we evaluated the potential of more stable analogs to interfere with opiate withdrawal. OBJECTIVES: The potential of monomethylated oleoyl glycine (oleoyl alanine, HU595) to interfere with somatic and aversive effects of acute naloxone-precipitated MWD, its duration, and mechanism of action was assessed in male Sprague Dawley rats. The potential of dimethylated oleoyl glycine (HU596) to interfere with the aversive effects of naloxone-precipitated MWD was also investigated. RESULTS: Oleoyl alanine (HU595) interfered with somatic and aversive effects produced by naloxone-precipitated MWD at equivalent doses (1 and 5 mg/kg, i.p.) as we have reported for oleoyl glycine; however, oleoyl alanine produced a longer lasting (60 min) interference, yet did not produce rewarding or aversive effects on its own and did not modify locomotor activity. HU596 was not effective. The interference with aversive effects of naloxone-precipitated MWD by oleoyl alanine was prevented by both a PPARα antagonist and a CB1 receptor antagonist. Accordingly, the compound was found to inhibit FAAH and activate PPARα in vitro. Finally, oleoyl alanine also reduced acute naloxone-precipitated MWD anhedonia, as measured by decreased saccharin preference. CONCLUSIONS: Oleoyl alanine (also an endogenous fatty acid) may be a more stable and effective treatment for opiate withdrawal than oleoyl glycine.
Assuntos
Alanina/uso terapêutico , Analgésicos Opioides/efeitos adversos , Glicina/análogos & derivados , Morfina/efeitos adversos , Naloxona/efeitos adversos , Ácidos Oleicos/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Alanina/análogos & derivados , Animais , Glicina/química , Glicina/uso terapêutico , Masculino , Dependência de Morfina/tratamento farmacológico , Dependência de Morfina/psicologia , Antagonistas de Entorpecentes/efeitos adversos , Ácidos Oleicos/química , Ratos , Ratos Sprague-Dawley , Recompensa , Síndrome de Abstinência a Substâncias/psicologiaRESUMO
Rolipram, a phosphodiesterase-4 (PDE4) inhibitor, is of current interest as a cognitive enhancer and as a treatment for inflammatory diseases. Originally developed as an anti-depressant, rolipram's efficacy was limited due to its side effects of nausea and vomiting. The experiments reported here evaluated the potential of rolipram to produce conditioned gaping (a selective measure of nausea in rats) to a flavor in the taste reactivity test (Experiment 1) and to a context (Experiment 2). In Experiment 1, rats were intra-orally infused with 17% sucrose solution prior to being injected with rolipram (Vehicle, 0.03, 0.1 or 0.3 mg/kg). Following 3 conditioning trials, rats conditioned with 0.3 mg/kg rolipram displayed conditioned gaping reactions during the infusion of sucrose. In Experiment 2, rats received 4 conditioning trials in which they were injected with 0.3 mg/kg rolipram and placed into a distinctive chamber. At test, when returned to the chamber rats displayed conditioned gaping. These results demonstrate the ability of the conditioned gaping model to detect the nauseating properties of a rolipram-paired flavor (Experiment 1) and rolipram-paired context (Experiment 2), further validating the potential use of the conditioned gaping model as a pre-clinical screening tool to evaluate the side effect of nausea produced by newly developed drugs.