RESUMO
The semiconductor industry has claimed that perfluorooctanesulfonate (PFOS), a persistent per- and polyfluoroalkyl substance (PFAS), has been eliminated from semiconductor production; however, information about the use of alternative compounds remains limited. This study aimed to develop a nontarget approach to discovering diverse PFAS substitutions used in semiconductor manufacturing. A distinct fragment-based approach has been established to identify the hydrophobic and hydrophilic features of acidic and neutral fluorosurfactants through fragments and neutral losses, including those outside the homologous series. Ten sewage samples from 5 semiconductor plants were analyzed with target and nontarget analysis. Among the 20 identified PFAS spanning 12 subclasses, 15 were reported in semiconductor sewage for the first time. The dominant identified PFAS compounds were C4 sulfonamido derivatives, including perfluorobutane sulfonamido ethanol (FBSE), perfluorobutane sulfonamide (FBSA), and perfluorobutane sulfonamido diethanol (FBSEE diol), with maximum concentrations of 482 µg/L, 141 µg/L, and 83.5 µg/L in sewage, respectively. Subsequently, three ultrashort chain perfluoroalkyl acids (PFAAs) were identified in all samples, ranging from 0.004 to 19.9 µg/L. Three effluent samples from the associated industrial wastewater treatment plants (WWTPs) were further analyzed. This finding, that the C4 sulfonamido acetic acid series constitutes a significant portion (65%-82%) of effluents from WWTP3 and WWTP4, emphasizes the conversion of fluorinated alcohols to fluorinated acids during aerobic treatment. The identification of the intermediate metabolites of FBSEE diol, further supported by our laboratory batch studies, prompts the proposal of a novel metabolic pathway for FBSEE diol. The total amount of perfluorobutane sulfonamido derivatives reached 1934 µg/L (90%), while that of PFAAs, which have typically received attention, was only 205 µg/L (10%). This suggests that perfluorobutane sulfonamido derivatives are emerging as a new trend in fluorosurfactants used in the semiconductor industry, serving as PFAS precursors and contributing to the release of their metabolites into the environment.
Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Esgotos/química , Tensoativos , Poluentes Químicos da Água/análise , Fluorocarbonos/análiseRESUMO
Cefotaxime (CTX), cephalexin (CFX), cephradine (CFD), cephapirin (CFP), and cefazolin (CFZ) were selected as target cephalosporin antibiotics to study their oxidative transformation by δ-MnO2. Although they all have the same core structure (7-aminodesacetoxycephalosporanic acid), very different MnO2 oxidation rates were observed at pH 4 (the initial reaction rate constant kinit ranged from 0.014 to 2.6 h-1). An extensive investigation of the substructure compounds and byproduct analysis revealed that the oxidation mainly occurred at the following two sites on the core structure: (1) the sulfur atom in the cephem ring and (2) the carbon-carbon double bond (CâC) and its proximal carboxylic acid group. In the case of (2), when there is an acetyloxymethyl group at the C-3 position of the core structure, the formation of the keto-sulfone byproducts was inhibited. The overall results indicated that a substituent at the C-3 position could stabilize the core structure, which would result in a decrease in the oxidation rate; however, a substituent at the amine position of the core structure might affect the overall degradation rate of the cephalosporin, depending on its reactivity with MnO2. Thus, the apparent reaction rates varied widely in the trend of CTX > CFP > CFD > core structure ≈ CFX > CFZ. The mechanistic elucidation can also help explain the degradation rates of cephalosporin antibiotics in other oxidation processes.
Assuntos
Cefalosporinas , Compostos de Manganês , Oxirredução , ÓxidosRESUMO
Ketamine has been increasingly used in medicine and has the potential for abuse or illicit use around the world. Ketamine cannot be removed by conventional wastewater treatment plants. Although ketamine and its metabolite norketamine have been detected to a significant degree in effluents and aquatic environments, their ecotoxicity effects in aquatic organisms remain undefined. In this study, we investigated the acute toxicity of ketamine and its metabolite, along with the chronic reproductive toxicity of ketamine (5-100µg/L) to Daphnia magna. Multiple environmental scenarios were also evaluated, including drug mixtures and sunlight irradiation toxicity. Ketamine and norketamine caused acute toxicity to D. magna, with half lethal concentration (LC50) values of 30.93 and 25.35mg/L, respectively, after 48h of exposure. Irradiated solutions of ketamine (20mg/L) significantly increased the mortality of D. magna; pre-irradiation durations up to 2h rapidly increased the death rate to 100%. A new photolysis byproduct (M.W. 241) of norketamine that accumulates during irradiation was identified for the first time. The relevant environmental concentration of ketamine produced significant reproductive toxicity effects in D. magna, as revealed by the reduction of the number of total live offspring by 33.6-49.8% (p < 0.05). The toxicity results indicate that the environmental hazardous risks of the relevant ketamine concentration cannot be ignored and warrant further examination.
Assuntos
Daphnia/efeitos dos fármacos , Ketamina/análogos & derivados , Poluentes Químicos da Água/toxicidade , Animais , Ketamina/efeitos da radiação , Ketamina/toxicidade , Dose Letal Mediana , Fotólise , Reprodução/efeitos dos fármacos , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/efeitos da radiaçãoRESUMO
This study investigated the oxidative transformation of four controlled substances (ketamine, methamphetamine, morphine, and codeine) by synthesized MnO2 (δ-MnO2) in aqueous environments. The results indicated that ketamine and methamphetamine were negligibly oxidized by MnO2 and, thus, may be persistent in the aqueous environment. However, morphine and codeine were able to be oxidized by MnO2, which indicated that they are likely naturally attenuated in aqueous environments. Overall, lower solution pH values, lower initial compound concentrations, and higher MnO2 loading resulted in a faster reaction rate. The oxidation of morphine was inhibited in the presence of metal ions (Mn(2+), Fe(3+), Ca(2+), and Mg(2+)) and fulvic acid. However, the addition of Fe(3+) and fulvic acid enhanced codeine oxidation. A second-order kinetics model described the oxidation of morphine and codeine by MnO2; it suggested that the formation of a surface precursor complex between the target compound and the MnO2 surface was the rate-limiting step. Although the target compounds were degraded, the slow TOC removal indicated that several byproducts were formed and persist against further MnO2 oxidation.
RESUMO
In this work, we investigated the emerging pollutants in Taiwanese groundwater for the first time and correlated their presence with possible contamination sources. Fifty target pharmaceuticals and perfluorinated chemicals in groundwater were mostly present at ng L(-1) concentrations, except for 17α-ethynylestradiol, sulfamethoxazole, and acetaminophen (maximums of 1822, 1820, and 1036 ng L(-1), respectively). Perfluorinated compounds were detected with the highest frequencies in groundwater at almost all of the sample sites, especially short-chained perfluorinated carboxylates, which were easily transferred to the groundwater. The results indicate that the compounds found to have high detection frequencies and concentrations in groundwater are similar to those found in other countries around the world. Most common pharmaceuticals that contain hydrophilic groups, such as sulfonamide antibiotics and caffeine, are easily transported through surface waters to groundwater. The results also indicated that the persistent natures of emerging contaminants with high detection frequencies in surface water and groundwater, such as perfluorooctanesulfonate (risk quotient >1), caffeine, and carbamazepine, should be further studied and evaluated.
Assuntos
Monitoramento Ambiental , Fluorocarbonos/análise , Água Subterrânea/química , Hormônios/análise , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos , Ácidos Carboxílicos , Água Doce/química , Taiwan , Abastecimento de ÁguaRESUMO
The current article maps perfluoroalkyl acids (PFAAs) contamination in the largest Science Park of Taiwan. The occurrence of ten target PFAAs in the effluent of an industrial wastewater treatment plant (IWWTP), its receiving rivers, rainwater, sediment, and the muscles and livers of fish was investigated. All target PFAAs were found in effluent of IWWTP, in which perfluorooctane sulfonate (PFOS) (6,930 ng/L), perfluorohexyl sulfonate (PFHxS) (2,662 ng/L) and perfluorooctanoic acid (PFOA) (3,298 ng/L) were the major constituents. Concentrations of PFBS and PFOS in the IWWTP downstream areas have exceeded safe concentration levels of avian and aquatic life, indicating a potential risk to wildlife in those areas. In sediment samples, predominant contaminants were PFOS (1.5-78 ng/g), PFOA (0.5-5.6 ng/g), and perfluorododecanoic acid (PFDoA) (nd-5.4 ng/g). In biological tissue samples, concentrations as high as 28,933 ng/g of PFOS were detected in tilapia and catfish liver samples. A positive correlation for log (C sediment/C water) and log (C tissue/C water) was found. The concentration and proportion (percentage of all PFAAs) of PFOS found in biotissue samples from the Keya River (which receives industrial wastewater) were found to be much greater (200 times) than those of samples from the Keelung River (which receives mainly domestic wastewater). These findings suggest that the receiving aquatic environments and, in turn, the human food chain can be significantly influenced by industrial discharges.
Assuntos
Monitoramento Ambiental , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/análise , Ácidos Alcanossulfônicos/metabolismo , Animais , Caprilatos/análise , Caprilatos/metabolismo , Indústria Química , Peixes/metabolismo , Fluorocarbonos/metabolismo , Chuva/química , Rios/química , Taiwan , Águas Residuárias/química , Poluentes Químicos da Água/metabolismoRESUMO
Urine source separation, as an innovative concept for the reuse of microlevel nutrients in human urine, has drawn increasing attention recently. Consequently, removing coexisting pharmaceuticals in urine is necessary for further reuse. This study is the first to apply the solar-driven persulfate process (Solar/PS) to the investigation of cephradine (CFD) and caffeine (CAF) degradation in synthetic human urine. The results showed that significantly more degradation of CFD and CAF occurs with the Solar/PS process than with persulfate oxidation and direct sunlight photolysis, respectively. The generated reactive species ·OH, SO4·-, O2·- and 1O2 were identified in the Solar/PS process. While SO4·- played a dominant role at pH 6, it played a minor role at pH 9 due to the lower amount generated under alkaline conditions. The presence of chloride and ammonia negatively impacted the photodegradation of both compounds. In contrast, bicarbonate exhibited no effect on CAF but enhanced CFD degradation owing to its amino-acid-like structure, which has a higher reactivity toward CO3·-. Although total organic carbon (TOC) was partially mineralized after 6 h of operation, no Microtox® toxicity was observed.
Assuntos
Cefradina , Poluentes Químicos da Água , Humanos , Cafeína , Luz Solar , Fotólise , Oxirredução , Poluentes Químicos da Água/química , Sulfatos/químicaRESUMO
The coexistence of free chlorine and bromide under sunlight irradiation (sunlight/FC with Br-) is unavoidable in outdoor seawater swimming pools, and the formation of brominated disinfection byproducts could act more harmful than chlorinated disinfection byproducts. In this study, benzotriazole was selected as a model compound to investigate the degradation rate and the subsequent formation of disinfection byproducts via sunlight/FC with Br- process. The rate constants for the degradation of benzotriazole under pseudo first order conditions in sunlight/FC with Br- and sunlight/FC are 2.3 ± 0.07 × 10-1 min-1 and 6.0 ± 0.7 × 10-2 min-1, respectively. The enhanced degradation of benzotriazole can be ascribed to the generation of HOâ¢, bromine species, and reactive halogen species (RHS) during sunlight/FC with Br-. Despite the fact that sunlight/FC with Br- process enhanced benzotriazole degradation, the reaction results in increasing tribromomethane (TBM) formation. A high concentration (37.8 µg/L) of TBM was detected in the sunlight/FC with Br-, which was due to the reaction of RHS. The degradation of benzotriazole was notably influenced by the pH value (pH 4 - 11), the concentration of bromide (0 - 2 mM), and free chlorine (1 - 6 mg/L). Furthermore, the concentration of TBM increased when the free chlorine concentrations increased, implying the formation potential of harmful TBM in chlorinated seawater swimming pools.
Assuntos
Brometos , Cloro , Luz Solar , Triazóis , Poluentes Químicos da Água , Triazóis/química , Brometos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Cloro/química , Desinfecção , Trialometanos/química , Água do Mar/química , Desinfetantes/química , Desinfetantes/análiseRESUMO
Taiwan, identified as pivotal in the Asian drug trafficking chain, has been experiencing a surge in illicit drug-related issues. Wastewater-based epidemiology (WBE) has emerged as a promising approach for comprehensive evaluation of actual illicit drug usage. This study presents the first WBE investigation of illicit drug consumption in Taiwan based on the analysis of wastewater from four wastewater treatment plants (WWTPs) in the Taipei metropolitan area. Additionally, it demonstrates a high correlation between the amounts of illicit drugs seized and influent concentrations over an extended period of time. The reliability of solid-phase extraction and analysis via high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was validated for 16 illicit drugs (methamphetamine, ketamine, cocaine, codeine, methadone, morphine, meperidine, fentanyl, sufentanil, para-methoxyamphetamine (PMA), para-methoxymethamphetamine (PMMA), 3,4-methylenedioxymethamphetamine (MDMA), cathinone, methcathinone, mephedrone (MEPH), and 4-methylethcathinone (4-MEC)). Methamphetamine, ketamine, and 4-MEC were consistently detected in all wastewater samples, underscoring their prevalence in the Taipei metropolitan area. Biochemical oxygen demand (BOD) and ammonia nitrogen (ammonia N) were employed to reduce uncertainty in estimations of population size during back-calculation of illicit drug consumption. The results indicate that methamphetamine was the most consumed drug (175-740 mg day-1 1000 people-1), followed by ketamine (22-280 mg day-1 1000 people-1). In addition, urban-related WWTPs exhibited higher consumption of methamphetamine and ketamine than did the suburban-related WWTP, indicating distinct illicit drug usage patterns between suburban and urban regions. Moreover, an examination of temporal trends in wastewater from the Dihua WWTP revealed a persistent predominance of ketamine and methamphetamine, consistent with statistical data pertaining to seizure quantities and urine test results. The study provides encouraging insight into spatial and temporal variations in illicit drug usage in the Taipei metropolitan area, emphasizing the complementary role of WBE in understanding trends in illicit drug abuse.
Assuntos
Drogas Ilícitas , Águas Residuárias , Poluentes Químicos da Água , Taiwan/epidemiologia , Águas Residuárias/química , Drogas Ilícitas/análise , Poluentes Químicos da Água/análise , Detecção do Abuso de Substâncias/métodos , Humanos , Monitoramento Ambiental , Espectrometria de Massas em Tandem , CidadesRESUMO
The use of cytotoxic substances, such as 5-fluorouracil and cyclophosphamide, is carefully controlled; however, these medications may still enter bodies of water through wastewater discharge. These substances may pose risks to stream and river life, as well as to humans via drinking water. In this study, the photochemical fate of 5-fluorouracil and cyclophosphamide was investigated in synthetic waters and four river waters and was found to be the most important attenuation process for each entity in natural surface waters. Bicarbonate alone was found to react with the excited states of 5-fluorouracil, thus enhancing direct photolysis rates. In the presence of nitrate and significant amounts of bicarbonate (close to 2 mM), 5-fluorouracil was rapidly removed (within 1 day) through indirect photolysis. In contrast, natural attenuation was of low importance for cyclophosphamide in most surface waters studied. A long, shallow river or lake with a long residence time (>7 days), very low alkalinity, and significant nitrate levels (>5 mg-N L(-1)) may be an exception. The phototransformation product of 5-fluorouracil was also identified. However, the total organic carbon experiments yielded important results: photolysis resulted in quick transformation of 5-fluorouracil but minimal mineralization. Additional studies of the toxicity of photobyproducts of 5-fluorouracil are needed to determine the true risk to human health of 5-fluorouracil contamination of surface water, given its near-total photodegradation and resultant, deceptively low detection rate in surface waters.
Assuntos
Antineoplásicos/química , Ciclofosfamida/química , Fluoruracila/química , Fotólise , Poluentes Químicos da Água/química , Carbono/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodosRESUMO
Sunlight-induced photoirradiation of chlorine (sunlight/chlorine) can be observed in outdoor swimming pools and open-channel disinfection units for wastewater treatment. In this study, the degradation of ketamine, an environmentally persistent pharmaceutical, under sunlight irradiation in the presence of a low concentration of chlorine (1 mg/L as Cl2) was investigated to elucidate the evolution of reactive species and their contribution to ketamine removal. â¢OH dominates the initial stage of sunlight/chlorine; however, after chlorine depletion, reactions still progress with an observed rate constant (kobs = 7.6 ± 0.50 × 10-3 min-1) an order of magnitude higher than photolysis alone (kobs = 2.9 ± 0.15 × 10-4 min-1). When chlorine is depleted, O3 becomes the major reactant that degrades ketamine. High O3 yields were found in both sunlight/HOCl (12.5 ± 0.5% at pH 5) and sunlight/ClO- (10 ± 1% at pH 10) systems. At sub-µM levels, O3 resulted in substantial removal of ketamine, and even faster rates were observed in the presence of sunlight. A kinetic model was also established, and evaluate time-dependent concentration levels during sunlight/chlorine. The model simulation showed that the cumulative O3 concentration could reach 0.91 µM, and O3 contributed 31% ketamine removal during the sunlight/chlorine process. Primary and secondary amine functional groups were demonstrated to be the reaction sites of O3; other pharmaceuticals, such as atenolol and metoprolol, underwent similar phenomena. In addition, the experimental and model results further indicated that sunlight/ClO2- or ClO2 also participates in the degradation of ketamine with a minor role; trace amounts (below nM level) of ClO2- and ClO2 were estimated by the simulation.
Assuntos
Compostos Clorados , Ketamina , Poluentes Químicos da Água , Purificação da Água , Cloro , Luz Solar , Cloretos , Desinfecção/métodos , Purificação da Água/métodos , Preparações Farmacêuticas , ÓxidosRESUMO
Over the past decades, the presence of pharmaceutical emerging contaminants in water bodies is receiving increasing attention due to the high concentration detected from wastewater effluent. Water systems contain a wide range of components coexisting together, which increases the difficulty of removing pollutants from the water. In order to achieve selective photodegradation and to enhance the photocatalytic activity of the photocatalyst on emerging contaminants, a Zr-based metal-organic framework (MOF), termed VNU-1 (VNU represents Vietnam National University) constructed with ditopic linker 1,4-bis(2-[4-carboxyphenyl]ethynyl)benzene (H2CPEB), with enlarged pore size and ameliorated optical properties, was synthesized and applied in this study. When compared to UiO-66 MOFs, which only had 30% photodegradation of sulfamethoxazole, VNU-1 had 7.5 times higher adsorption and reached 100% photodegradation in 10 min. The tailored pore size of VNU-1 resulted in size-selective properties between small-molecule antibiotics and big-molecule humic acid, and VNU-1 maintained high photodegradation performance after 5 cycles. Based on the toxicity test and the scavenger test, the products after photodegradation had no toxic effect on V. fischeri bacteria, and the superoxide radical (·O2-) and holes (h+) generated from VNU-1 dominated the photodegradation reaction. These results demonstrate that VNU-1 is a promising photocatalyst and provide a new insight for developing MOF photocatalyst to remove emerging contaminants in the wastewater systems.
RESUMO
Photodegradation may be the most important elimination process for cephalosporin antibiotics in surface water. Cefazolin (CFZ) and cephapirin (CFP) underwent mainly direct photolysis (t(1/2) = 0.7, 3.9 h), while cephalexin (CFX) and cephradine (CFD) were mainly transformed by indirect photolysis, which during the process a bicarbonate-enhanced nitrate system contributed most to the loss rate of CFX, CFD, and cefotaxime (CTX) (t(1/2) = 4.5, 5.3, and 1.3 h, respectively). Laboratory data suggested that bicarbonate enhanced the phototransformation of CFD and CFX in natural water environments. When used together, NO(3)(-), HCO(3)(-), and DOM closely simulated the photolysis behavior in the Jingmei River and were the strongest determinants in the fate of cephalosporins. TOC and byproducts were investigated and identified. Direct photolysis led to decarboxylation of CFD, CFX, and CFP. Transformation only (no mineralization) of all cephalosporins was observed through direct photolysis; byproducts were found to be even less photolabile and more toxic (via the Microtox test). CFZ exhibited the strongest acute toxicity after just a few hours, which may be largely attributed to its 5-methyl-1,3,4-thiadiazole-2-thiol moiety. Many pharmaceuticals were previously known to undergo direct sunlight photolysis and transformation in surface waters; however, the synergistic increase in toxicity caused by this cocktail (via pharmaceutical photobyproducts) cannot be ignored and warrants future research attention.
Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/toxicidade , Cefalosporinas/química , Cefalosporinas/toxicidade , Água Doce/química , Fotólise , Carbonatos/química , Cromatografia Líquida , Luminescência , Nitratos/química , Compostos Orgânicos/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em TandemRESUMO
Microplastics (MPs) have received much attention in recent years because of their continuous photoaging process in aquatic environments. However, little research has been conducted on the photochemistry of aged microplastics and the associated effects on coexisting pharmaceuticals. This study investigated the photodegradation of cimetidine via aged polystyrene microplastics (PS-MPs) with different aging times (0-7 d) under simulated sunlight irradiation (700 W/m2). PS-MPs with 5 d of aging time resulted in much faster cimetidine degradation (>99%) after 2 h of irradiation than pristine PS-MPs (<8%). The enhanced photodegradation of cimetidine by aged PS-MPs was related to the increase in chromophoric oxygenated groups (CO, C-O) followed by redshifted absorbance through the photoaging process, which induced the formation of the environmentally persistent free radicals (EPFRs) OH, 1O2 and 3PS*. However, only 1O2 and 3PS* contributed to enhanced cimetidine photodegradation, with 1O2 playing a more important role in our case. This work also demonstrated that other compounds that are susceptible to indirect photolysis, such as codeine and morphine, are likewise significantly degraded under irradiation in the presence of aged PS-MPs. Although previous studies have reported how MPs can increase the persistence of contaminants, this study demonstrates that MPs can serve as photosensitizers and alter the fate of coexisting pharmaceuticals in aquatic environments.
Assuntos
Microplásticos , Poluentes Químicos da Água , Cimetidina , Fotólise , Fármacos Fotossensibilizantes , Plásticos , PoliestirenosRESUMO
MnO2, which is ubiquitous in soil and sediment in natural water environments, may play an important role in the photolysis of contaminants by sunlight, but the interactions between MnO2 and contaminants in aqueous environments under sunlight irradiation have not been investigated. In this study, the simultaneous presence of sunlight and MnO2 significantly enhanced the degradation efficiency of methotrexate (MTX). Accordingly, we hypothesized that the overall enhancement of this synergistic reaction is due to the additional production of Mn(III) via MTX self-sensitized photolysis. The pseudo-first-order kinetic model for the photoreaction of MTX with MnO2 (Light/MTX+MnO2) during the initial reaction kinetics (0-2 h) revealed a rate constant of 0.43 h1 ([MTX] = 20 µM, [MnO2] = 200 µM, and pH = 7), which is faster than that obtained with sunlight alone (0.14 h1) or MnO2 alone; Mn(II) and Mn(III) were formed at concentrations of 24.3 ± 1.0 µM and 14.8 ± 1.4 µM, respectively. Dissolved Mn(III) species were identified as the main oxidant species responsible for the degradation of MTX. Two reaction pathways for the production of Mn(III) through Light/MTX+MnO2 were proposed; MTX acts as a photosensitizer to produce 3MTX* responsible for the reduction of MnO2 to Mn(III), whereas O2⢠participates in the oxidation of Mn(â ¡) to Mn(â ¢). Byproduct analysis demonstrated that the Mn(III) generated in the Light/MTX+MnO2 system enhances Cï¼N bond cleavage, ketonization, and hydrolysis pathways in the MTX transformation.
Assuntos
Compostos de Manganês , Poluentes Químicos da Água , Cinética , Compostos de Manganês/química , Metotrexato , Oxirredução , Óxidos/química , Fotólise , Água , Poluentes Químicos da Água/químicaRESUMO
Benzotriazole (BT) and 5-methyl-1H-benzotriazole (5-MeBT) are the most commonly used UV stabilizers and recalcitrant contaminants that are widely distributed in aquatic environments. The novelty of this study was to investigate the role of RCSs in the enhanced degradation of BT and 5-MeBT during the sunlight/free chlorine process. The results showed that sunlight/free chlorine could enhance the degradation of BT and 5-MeBT compared with that obtained with sunlight irradiation and chlorination alone, and this process was well described by pseudo-first-order kinetics. The degradation rate constants of BT and 5-MeBT during sunlight/free chlorine treatment at pH 7 were 0.094 ± 0.001 min-1 and 0.134 ± 0.002 min-1, respectively. The degradation rates further increased with increases in the chlorine dosage and under alkaline conditions (3.818 ± 0.243 min-1 for BT and 7.754 ± 0.716 min-1 for 5-MeBT at pH 9). The enhanced removal obtained during the sunlight/free chlorine process could be attributed to the generation of HO⢠and reactive chlorine species (RCSs), such as Cl⢠and ClOâ¢. Under alkaline conditions, RCSs were the dominant reactive species, and their contribution increased from 21.2% to 98.7% with increases in the pH from 7 to 9; this phenomenon was due to changes in free chlorine and BT speciation. Radical scavenging tests further verified that BT was mainly decomposed by ClOâ¢, and ClO⢠showed high reactivity toward deprotonated BT through second-order rate constant estimation. A byproduct analysis demonstrated that BT underwent hydroxylation and chlorine substitution, and a high yield of 1-chlorobenzotriazole (1-ClBT) formation was observed. Even though the sunlight/free chlorine process resulted in a low level of mineralization, no Microtox® toxicity was detected in the treated solutions. Briefly, the significant contribution of ClO⢠to BT removal under alkaline conditions implies that sunlight/free chlorine could be utilized in a broader range of treatment conditions.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro/análise , Luz Solar , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Raios Ultravioleta , Cinética , Cloretos , OxirreduçãoRESUMO
Cardiovascular disease (CVD) is strongly associated with the gut microbiota and its metabolites, including trimethylamine-N-oxide (TMAO), formed from metaorganismal metabolism of Ê-carnitine. Raw garlic juice, with allicin as its primary compound, exhibits considerable effects on the gut microbiota. This study validated the benefits of raw garlic juice against CVD risk via modulation of the gut microbiota and its metabolites. Allicin supplementation significantly decreased serum TMAO in Ê-carnitine-fed C57BL/6 J mice, reduced aortic lesions, and altered the fecal microbiota in carnitine-induced, atherosclerosis-prone, apolipoprotein E-deficient (ApoE-/-) mice. In human subjects exhibiting high-TMAO production, raw garlic juice intake for a week reduced TMAO formation, improved gut microbial diversity, and increased the relative abundances of beneficial bacteria. In in vitro and ex vivo studies, raw garlic juice and allicin inhibited γ-butyrobetaine (γBB) and trimethylamine production by the gut microbiota. Thus, raw garlic juice and allicin can potentially prevent cardiovascular disease by decreasing TMAO production via gut microbiota modulation.
Assuntos
Aterosclerose , Alho , Microbioma Gastrointestinal , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Dissulfetos , Humanos , Metilaminas , Camundongos , Camundongos Endogâmicos C57BL , Óxidos , Ácidos SulfínicosRESUMO
The global distribution and environmental persistence of perfluoroalkyl acids (PFAAs) has been considered a critical environmental concern. In this work, we successfully fabricated a graphene oxide-titanium dioxide (GOTiO2) photoelectrode for perfluorooctane sulfonate (PFOS) degradation in a photoelectrochemical (PEC) system. The results reveal that a 5 wt.% GOTiO2 anode possesses the optimal PEC performance, with a band gap (Eg) of 2.42 eV, specific surface area (SBET) of 72.6 m2 g-1 and specific capacitance (Cs) of 4.63 mF cm-2. In the PEC system, PFOS can be efficiently removed within 4 h of reaction time, with a pseudo-first-order rate constant of 0.0124 min-1, under the optimized conditions of current density = 20 mA cm-2, electrode distance = 5 mm, solution pH = 5.64, [PFOS]0= 0.5 µM and NaClO4 electrolyte concentration = 50 mM. The electron transfer pathway, hydroxyl radicals and superoxide radicals are all responsible for PFOS decomposition/transformation. New degradation pathways were identified; a total of 25 PFOS byproducts are reported in this work; and perfluoroalkane sulfonates (PFSAs), perfluorinated aldehydes (PFALs) and hydrofluorocarbons (HFCs) were identified for the first time. PFOS degradation involves the desulfonation pathway as the first step, followed by oxidation and subsequent defluorination, decarboxylation, decarbonylation, sulfonation, defluorination and hydroxylation. The results from this work also show that the reactivity of PFAAs is related to their carbon chain length, with shorter-chain PFAAs exhibiting a lower degradation rate. In a PFAA mixture, a decline in the degradation rate was observed for the shorter-chain-length PFAAs, suggesting stronger competitive inhibition and indicating stronger environmental recalcitrance during the treatment process. Novelty statement: Although many efforts have been made to identify perfluorooctane sulfonate (PFOS) degradation byproducts, previous studies were only able to identify byproducts that are related to perfluorinated carboxylic acids (PFCAs). This is the first study to elucidate the new PFOS degradation pathway; furthermore, this is the first report to identify byproducts containing sulfonate groups (perfluoroalkane sulfonates, PFSAs), aldehyde groups (perfluorinated aldehydes, PFALs), and hydrofluorocarbons (HFCs). This study further systematically explores how perfluoroalkyl acid (PFAA) degradation may be affected in the mixture system: shorter-chain-length PFAAs suffer stronger competitive inhibition in the photoelectrochemical (PEC) system. By utilizing the graphene oxide-titanium dioxide (GOTiO2) photoelectrode fabricated in this work, PFOS can be successfully decomposed during the PEC process for the first time.
Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Carboxílicos , Monitoramento Ambiental , Fluorocarbonos/análiseRESUMO
4-Methylbenzylidene camphor (4-MBC), a widely used ultraviolet (UV) filter detected in various aquatic environments, has been shown to evoke estrogenic activity. In this study, the use of UV light-activated persulfate for 4-MBC degradation is evaluated for the first time. Our results showed that the combination of UV and persulfate (UV/persulfate) can significantly remove 4-MBC, with a pseudo-first-order rate constant (kobs) of 0.1349 min-1 under the conditions of [4-MBC]0 = 0.4 µM, [persulfate]0 = 12.6 µM, and initial pH = 7. The kobs and persulfate dose exhibited a linear proportional relationship in the persulfate dose range of 4.2-42 µM. The kobs remained similar at pH 5 and pH 7 but significantly decreased at pH 9. A radical scavenging test indicated that SO4-⢠was the dominant species in 4-MBC degradation; the second-order rate constant of SO4-⢠with 4-MBC was calculated to be (2.82 ± 0.05) × 109 M-1 s-1. During the UV/persulfate reaction, 4-MBC was continuously degraded, while SO4-⢠was gradually converted to SO42-. 4-MBC degradation involved the hydroxylation and demethylation pathways, resulting in the generation of transformation byproducts P1 (m/z 271) and P2 (m/z 243), respectively. The Microtox® acute toxicity test (Vibrio fischeri) showed increasing toxicity during the UV/persulfate degradation of 4-MBC. The 4-MBC degradation rate was markedly lower in outdoor swimming pool water than in deionized water. Graphical abstract.
Assuntos
Poluentes Químicos da Água , Cânfora/análogos & derivados , Cinética , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análiseRESUMO
Solar distillation is emerging as an environmentally friendly and energy-effective technology for clean water generation. However, bulk water heating and the possibly complex composition of water matrices of source water could undermine the system efficacy. In this study, an interfacial evaporation device consisting of activated carbon combined with P25 TiO2 as the top layer and polyethylene foam as the bottom layer (AC-P25/foam device) was established. With the excellent optical absorbance of AC and the heat localization effect contributed by the PE foam, the evaporation rate (r evp) of the device (r evp = 2.1 kg m-2 h-1) was improved by 209% and 71% compared with that of the water-only (r evp = 0.68 kg m-2 h-1) and conventional evaporation (i.e., submerged AC-P25) systems (r evp = 1.23 kg m-2 h-1), respectively. The reusability test showed the stable evaporation performance of AC-P25/foam within 7 cycles; this interfacial evaporation was also found to be less affected by suspended solids in water due to a reduction in the influence of light scattering. The AC-P25/foam device not only possessed photothermal ability for water distillation but was also able to prevent enrichment of volatile organic compounds (i.e., phenol) with â¼95% removal efficiency through adsorption and photocatalytic reactions under illumination. Additionally, an outdoor solar distillation test performed with synthetic saline water demonstrated the desalination ability of the AC-P25/foam device, with the concentrations of all ions in the distilled water ≤3.5 mg L-1, far below the drinking water guideline value provided by the World Health Organization. The materials of the AC-P25/foam photothermal device are readily available and easily fabricated, showing the practical feasibility of this device for clean water generation.